MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltpi Structured version   Unicode version

Theorem eltpi 3844
Description: A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpi  |-  ( A  e.  { B ,  C ,  D }  ->  ( A  =  B  \/  A  =  C  \/  A  =  D ) )

Proof of Theorem eltpi
StepHypRef Expression
1 eltpg 3843 . 2  |-  ( A  e.  { B ,  C ,  D }  ->  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D ) ) )
21ibi 233 1  |-  ( A  e.  { B ,  C ,  D }  ->  ( A  =  B  \/  A  =  C  \/  A  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 935    = wceq 1652    e. wcel 1725   {ctp 3808
This theorem is referenced by:  perfectlem2  21006  kur14lem7  24890
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-un 3317  df-sn 3812  df-pr 3813  df-tp 3814
  Copyright terms: Public domain W3C validator