MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltpsg Unicode version

Theorem eltpsg 16993
Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
eltpsi.k  |-  K  =  { <. ( Base `  ndx ) ,  A >. , 
<. (TopSet `  ndx ) ,  J >. }
Assertion
Ref Expression
eltpsg  |-  ( J  e.  (TopOn `  A
)  ->  K  e.  TopSp
)

Proof of Theorem eltpsg
StepHypRef Expression
1 eltpsi.k . . . . 5  |-  K  =  { <. ( Base `  ndx ) ,  A >. , 
<. (TopSet `  ndx ) ,  J >. }
2 df-tset 13531 . . . . 5  |- TopSet  = Slot  9
3 1lt9 10161 . . . . 5  |-  1  <  9
4 9nn 10124 . . . . 5  |-  9  e.  NN
51, 2, 3, 42strop 13550 . . . 4  |-  ( J  e.  (TopOn `  A
)  ->  J  =  (TopSet `  K ) )
6 toponmax 16976 . . . . . 6  |-  ( J  e.  (TopOn `  A
)  ->  A  e.  J )
71, 2, 3, 42strbas 13549 . . . . . 6  |-  ( A  e.  J  ->  A  =  ( Base `  K
) )
86, 7syl 16 . . . . 5  |-  ( J  e.  (TopOn `  A
)  ->  A  =  ( Base `  K )
)
98fveq2d 5718 . . . 4  |-  ( J  e.  (TopOn `  A
)  ->  (TopOn `  A
)  =  (TopOn `  ( Base `  K )
) )
105, 9eleq12d 2498 . . 3  |-  ( J  e.  (TopOn `  A
)  ->  ( J  e.  (TopOn `  A )  <->  (TopSet `  K )  e.  (TopOn `  ( Base `  K
) ) ) )
1110ibi 233 . 2  |-  ( J  e.  (TopOn `  A
)  ->  (TopSet `  K
)  e.  (TopOn `  ( Base `  K )
) )
12 eqid 2430 . . 3  |-  ( Base `  K )  =  (
Base `  K )
13 eqid 2430 . . 3  |-  (TopSet `  K )  =  (TopSet `  K )
1412, 13tsettps 16991 . 2  |-  ( (TopSet `  K )  e.  (TopOn `  ( Base `  K
) )  ->  K  e.  TopSp )
1511, 14syl 16 1  |-  ( J  e.  (TopOn `  A
)  ->  K  e.  TopSp
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   {cpr 3802   <.cop 3804   ` cfv 5440   9c9 10040   ndxcnx 13449   Basecbs 13452  TopSetcts 13518  TopOnctopon 16942   TopSpctps 16944
This theorem is referenced by:  eltpsi  16994  stoig  17210
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-cnex 9030  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050  ax-pre-mulgt0 9051
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-int 4038  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-1st 6335  df-2nd 6336  df-riota 6535  df-recs 6619  df-rdg 6654  df-1o 6710  df-oadd 6714  df-er 6891  df-en 7096  df-dom 7097  df-sdom 7098  df-fin 7099  df-pnf 9106  df-mnf 9107  df-xr 9108  df-ltxr 9109  df-le 9110  df-sub 9277  df-neg 9278  df-nn 9985  df-2 10042  df-3 10043  df-4 10044  df-5 10045  df-6 10046  df-7 10047  df-8 10048  df-9 10049  df-n0 10206  df-z 10267  df-uz 10473  df-fz 11028  df-struct 13454  df-ndx 13455  df-slot 13456  df-base 13457  df-tset 13531  df-rest 13633  df-topn 13634  df-top 16946  df-topon 16949  df-topsp 16950
  Copyright terms: Public domain W3C validator