Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltrans Structured version   Unicode version

Theorem eltrans 25729
 Description: Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.)
Hypothesis
Ref Expression
eltrans.1
Assertion
Ref Expression
eltrans

Proof of Theorem eltrans
StepHypRef Expression
1 df-trans 25694 . . 3
21eleq2i 2500 . 2
3 eltrans.1 . . 3
43dftr6 25366 . 2
52, 4bitr4i 244 1
 Colors of variables: wff set class Syntax hints:   wb 177   wcel 1725  cvv 2949   cdif 3310   wtr 4295   cep 4485   crn 4872   ccom 4875  ctrans 25670 This theorem is referenced by:  dfon3  25730 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pr 4396 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-rab 2707  df-v 2951  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-sn 3813  df-pr 3814  df-op 3816  df-uni 4009  df-br 4206  df-opab 4260  df-tr 4296  df-eprel 4487  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-trans 25694
 Copyright terms: Public domain W3C validator