Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltrpred Unicode version

Theorem eltrpred 25253
Description: A class is a transitive predecessor iff it is in some value of the underlying function. This theorem is not really meant to be used directly: instead refer to trpredpred 25255 and trpredmintr 25258. (Contributed by Scott Fenton, 28-Apr-2012.)
Assertion
Ref Expression
eltrpred  |-  ( Y  e.  TrPred ( R ,  A ,  X )  <->  E. i  e.  om  Y  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i ) )
Distinct variable groups:    R, a,
y, i    A, a,
y, i    X, a,
y, i    Y, a,
y, i

Proof of Theorem eltrpred
StepHypRef Expression
1 dftrpred2 25246 . . 3  |-  TrPred ( R ,  A ,  X
)  =  U_ i  e.  om  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i )
21eleq2i 2451 . 2  |-  ( Y  e.  TrPred ( R ,  A ,  X )  <->  Y  e.  U_ i  e. 
om  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i ) )
3 eliun 4039 . 2  |-  ( Y  e.  U_ i  e. 
om  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i )  <->  E. i  e.  om  Y  e.  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i ) )
42, 3bitri 241 1  |-  ( Y  e.  TrPred ( R ,  A ,  X )  <->  E. i  e.  om  Y  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    e. wcel 1717   E.wrex 2650   _Vcvv 2899   U_ciun 4035    e. cmpt 4207   omcom 4785    |` cres 4820   ` cfv 5394   reccrdg 6603   Predcpred 25191   TrPredctrpred 25244
This theorem is referenced by:  trpredtr  25257  trpredrec  25265
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-recs 6569  df-rdg 6604  df-trpred 25245
  Copyright terms: Public domain W3C validator