MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltx Unicode version

Theorem eltx 17561
Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
eltx  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  ( J  tX  K )  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  (
x  X.  y )  /\  ( x  X.  y )  C_  S
) ) )
Distinct variable groups:    x, p, y, J    K, p, x, y    S, p, x, y
Allowed substitution hints:    V( x, y, p)    W( x, y, p)

Proof of Theorem eltx
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqid 2412 . . . 4  |-  ran  (
x  e.  J , 
y  e.  K  |->  ( x  X.  y ) )  =  ran  (
x  e.  J , 
y  e.  K  |->  ( x  X.  y ) )
21txval 17557 . . 3  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) ) )
32eleq2d 2479 . 2  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  ( J  tX  K )  <-> 
S  e.  ( topGen ` 
ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) ) ) )
41txbasex 17559 . . . 4  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) )  e. 
_V )
5 eltg2b 16987 . . . 4  |-  ( ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y
) )  e.  _V  ->  ( S  e.  (
topGen `  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) )  <->  A. p  e.  S  E. z  e.  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y
) ) ( p  e.  z  /\  z  C_  S ) ) )
64, 5syl 16 . . 3  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  (
topGen `  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) )  <->  A. p  e.  S  E. z  e.  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y
) ) ( p  e.  z  /\  z  C_  S ) ) )
7 vex 2927 . . . . . . 7  |-  x  e. 
_V
8 vex 2927 . . . . . . 7  |-  y  e. 
_V
97, 8xpex 4957 . . . . . 6  |-  ( x  X.  y )  e. 
_V
109rgen2w 2742 . . . . 5  |-  A. x  e.  J  A. y  e.  K  ( x  X.  y )  e.  _V
11 eqid 2412 . . . . . 6  |-  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) )  =  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) )
12 eleq2 2473 . . . . . . 7  |-  ( z  =  ( x  X.  y )  ->  (
p  e.  z  <->  p  e.  ( x  X.  y
) ) )
13 sseq1 3337 . . . . . . 7  |-  ( z  =  ( x  X.  y )  ->  (
z  C_  S  <->  ( x  X.  y )  C_  S
) )
1412, 13anbi12d 692 . . . . . 6  |-  ( z  =  ( x  X.  y )  ->  (
( p  e.  z  /\  z  C_  S
)  <->  ( p  e.  ( x  X.  y
)  /\  ( x  X.  y )  C_  S
) ) )
1511, 14rexrnmpt2 6152 . . . . 5  |-  ( A. x  e.  J  A. y  e.  K  (
x  X.  y )  e.  _V  ->  ( E. z  e.  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y
) ) ( p  e.  z  /\  z  C_  S )  <->  E. x  e.  J  E. y  e.  K  ( p  e.  ( x  X.  y
)  /\  ( x  X.  y )  C_  S
) ) )
1610, 15ax-mp 8 . . . 4  |-  ( E. z  e.  ran  (
x  e.  J , 
y  e.  K  |->  ( x  X.  y ) ) ( p  e.  z  /\  z  C_  S )  <->  E. x  e.  J  E. y  e.  K  ( p  e.  ( x  X.  y
)  /\  ( x  X.  y )  C_  S
) )
1716ralbii 2698 . . 3  |-  ( A. p  e.  S  E. z  e.  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) ( p  e.  z  /\  z  C_  S
)  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  (
x  X.  y )  /\  ( x  X.  y )  C_  S
) )
186, 17syl6bb 253 . 2  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  (
topGen `  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) )  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  (
x  X.  y )  /\  ( x  X.  y )  C_  S
) ) )
193, 18bitrd 245 1  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  ( J  tX  K )  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  (
x  X.  y )  /\  ( x  X.  y )  C_  S
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2674   E.wrex 2675   _Vcvv 2924    C_ wss 3288    X. cxp 4843   ran crn 4846   ` cfv 5421  (class class class)co 6048    e. cmpt2 6050   topGenctg 13628    tX ctx 17553
This theorem is referenced by:  txcls  17597  txcnpi  17601  txdis  17625  txindis  17627  txdis1cn  17628  txlly  17629  txnlly  17630  txtube  17633  txcmplem1  17634  hausdiag  17638  tx1stc  17643  divstgplem  18111  cvmlift2lem10  24960
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-topgen 13630  df-tx 17555
  Copyright terms: Public domain W3C validator