MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluniima Structured version   Unicode version

Theorem eluniima 6000
Description: Membership in the union of an image of a function. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
eluniima  |-  ( Fun 
F  ->  ( B  e.  U. ( F " A )  <->  E. x  e.  A  B  e.  ( F `  x ) ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem eluniima
StepHypRef Expression
1 eliun 4099 . 2  |-  ( B  e.  U_ x  e.  A  ( F `  x )  <->  E. x  e.  A  B  e.  ( F `  x ) )
2 funiunfv 5998 . . 3  |-  ( Fun 
F  ->  U_ x  e.  A  ( F `  x )  =  U. ( F " A ) )
32eleq2d 2505 . 2  |-  ( Fun 
F  ->  ( B  e.  U_ x  e.  A  ( F `  x )  <-> 
B  e.  U. ( F " A ) ) )
41, 3syl5rbbr 253 1  |-  ( Fun 
F  ->  ( B  e.  U. ( F " A )  <->  E. x  e.  A  B  e.  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    e. wcel 1726   E.wrex 2708   U.cuni 4017   U_ciun 4095   "cima 4884   Fun wfun 5451   ` cfv 5457
This theorem is referenced by:  elunirn  6001  alephfp  7994  acsficl2d  14607  elhf  26120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-fv 5465
  Copyright terms: Public domain W3C validator