MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz1i Unicode version

Theorem eluz1i 10237
Description: Membership in a set of upper integers. (Contributed by NM, 5-Sep-2005.)
Hypothesis
Ref Expression
eluz.1  |-  M  e.  ZZ
Assertion
Ref Expression
eluz1i  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( N  e.  ZZ  /\  M  <_  N ) )

Proof of Theorem eluz1i
StepHypRef Expression
1 eluz.1 . 2  |-  M  e.  ZZ
2 eluz1 10234 . 2  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )
31, 2ax-mp 8 1  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( N  e.  ZZ  /\  M  <_  N ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    e. wcel 1684   class class class wbr 4023   ` cfv 5255    <_ cle 8868   ZZcz 10024   ZZ>=cuz 10230
This theorem is referenced by:  eluzaddi  10254  eluzsubi  10255  eluz2b1  10289  faclbnd4lem1  11306  climcndslem1  12308  ef01bndlem  12464  sin01bnd  12465  cos01bnd  12466  sin01gt0  12470  dvradcnv  19797  bposlem3  20525  bposlem4  20526  bposlem5  20527  bposlem9  20531  ballotlemfc0  23051  ballotlemfcc  23052  ballotlemfrci  23086  rnlogblem  23401  axlowdimlem16  24585  axlowdimlem17  24586  cndpv  26049  pgapspf  26052  nn0prpwlem  26238  jm2.20nn  27090  stoweidlem17  27766  usgraexvlem  28127
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-cnex 8793  ax-resscn 8794
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-neg 9040  df-z 10025  df-uz 10231
  Copyright terms: Public domain W3C validator