MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzfz2b Structured version   Unicode version

Theorem eluzfz2b 11058
Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 14-Sep-2005.)
Assertion
Ref Expression
eluzfz2b  |-  ( N  e.  ( ZZ>= `  M
)  <->  N  e.  ( M ... N ) )

Proof of Theorem eluzfz2b
StepHypRef Expression
1 eluzfz2 11057 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
2 elfzuz 11047 . 2  |-  ( N  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  M )
)
31, 2impbii 181 1  |-  ( N  e.  ( ZZ>= `  M
)  <->  N  e.  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    e. wcel 1725   ` cfv 5446  (class class class)co 6073   ZZ>=cuz 10480   ...cfz 11035
This theorem is referenced by:  smupval  12992  smueqlem  12994  smumul  12997  efgtlen  15350  dvntaylp  20279  taylthlem1  20281  2cshw2lem2  28219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-pre-lttri 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-neg 9286  df-z 10275  df-uz 10481  df-fz 11036
  Copyright terms: Public domain W3C validator