MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elvvv Structured version   Unicode version

Theorem elvvv 4929
Description: Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
elvvv  |-  ( A  e.  ( ( _V 
X.  _V )  X.  _V ) 
<->  E. x E. y E. z  A  =  <. <. x ,  y
>. ,  z >. )
Distinct variable group:    x, y, z, A

Proof of Theorem elvvv
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elxp 4887 . 2  |-  ( A  e.  ( ( _V 
X.  _V )  X.  _V ) 
<->  E. w E. z
( A  =  <. w ,  z >.  /\  (
w  e.  ( _V 
X.  _V )  /\  z  e.  _V ) ) )
2 anass 631 . . . . 5  |-  ( ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  /\  z  e.  _V )  <->  ( A  =  <. w ,  z
>.  /\  ( w  e.  ( _V  X.  _V )  /\  z  e.  _V ) ) )
3 19.42vv 1930 . . . . . 6  |-  ( E. x E. y ( A  =  <. w ,  z >.  /\  w  =  <. x ,  y
>. )  <->  ( A  = 
<. w ,  z >.  /\  E. x E. y  w  =  <. x ,  y >. ) )
4 ancom 438 . . . . . . 7  |-  ( ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  ( A  = 
<. w ,  z >.  /\  w  =  <. x ,  y >. )
)
542exbii 1593 . . . . . 6  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. x E. y
( A  =  <. w ,  z >.  /\  w  =  <. x ,  y
>. ) )
6 vex 2951 . . . . . . . 8  |-  z  e. 
_V
76biantru 492 . . . . . . 7  |-  ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  <->  ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  /\  z  e.  _V ) )
8 elvv 4928 . . . . . . . 8  |-  ( w  e.  ( _V  X.  _V )  <->  E. x E. y  w  =  <. x ,  y >. )
98anbi2i 676 . . . . . . 7  |-  ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  <->  ( A  =  <. w ,  z
>.  /\  E. x E. y  w  =  <. x ,  y >. )
)
107, 9bitr3i 243 . . . . . 6  |-  ( ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  /\  z  e.  _V )  <->  ( A  =  <. w ,  z
>.  /\  E. x E. y  w  =  <. x ,  y >. )
)
113, 5, 103bitr4ri 270 . . . . 5  |-  ( ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  /\  z  e.  _V )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  A  =  <. w ,  z >. )
)
122, 11bitr3i 243 . . . 4  |-  ( ( A  =  <. w ,  z >.  /\  (
w  e.  ( _V 
X.  _V )  /\  z  e.  _V ) )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  A  =  <. w ,  z >. )
)
13122exbii 1593 . . 3  |-  ( E. w E. z ( A  =  <. w ,  z >.  /\  (
w  e.  ( _V 
X.  _V )  /\  z  e.  _V ) )  <->  E. w E. z E. x E. y ( w  = 
<. x ,  y >.  /\  A  =  <. w ,  z >. )
)
14 exrot4 1760 . . . 4  |-  ( E. x E. y E. w E. z ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. w E. z E. x E. y ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. ) )
15 excom 1756 . . . . . 6  |-  ( E. w E. z ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. z E. w
( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. ) )
16 opex 4419 . . . . . . . 8  |-  <. x ,  y >.  e.  _V
17 opeq1 3976 . . . . . . . . 9  |-  ( w  =  <. x ,  y
>.  ->  <. w ,  z
>.  =  <. <. x ,  y >. ,  z
>. )
1817eqeq2d 2446 . . . . . . . 8  |-  ( w  =  <. x ,  y
>.  ->  ( A  = 
<. w ,  z >.  <->  A  =  <. <. x ,  y
>. ,  z >. ) )
1916, 18ceqsexv 2983 . . . . . . 7  |-  ( E. w ( w  = 
<. x ,  y >.  /\  A  =  <. w ,  z >. )  <->  A  =  <. <. x ,  y
>. ,  z >. )
2019exbii 1592 . . . . . 6  |-  ( E. z E. w ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. z  A  = 
<. <. x ,  y
>. ,  z >. )
2115, 20bitri 241 . . . . 5  |-  ( E. w E. z ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. z  A  = 
<. <. x ,  y
>. ,  z >. )
22212exbii 1593 . . . 4  |-  ( E. x E. y E. w E. z ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. x E. y E. z  A  =  <. <. x ,  y
>. ,  z >. )
2314, 22bitr3i 243 . . 3  |-  ( E. w E. z E. x E. y ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. x E. y E. z  A  =  <. <. x ,  y
>. ,  z >. )
2413, 23bitri 241 . 2  |-  ( E. w E. z ( A  =  <. w ,  z >.  /\  (
w  e.  ( _V 
X.  _V )  /\  z  e.  _V ) )  <->  E. x E. y E. z  A  =  <. <. x ,  y
>. ,  z >. )
251, 24bitri 241 1  |-  ( A  e.  ( ( _V 
X.  _V )  X.  _V ) 
<->  E. x E. y E. z  A  =  <. <. x ,  y
>. ,  z >. )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   _Vcvv 2948   <.cop 3809    X. cxp 4868
This theorem is referenced by:  ssrelrel  4968  dftpos3  6489
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-opab 4259  df-xp 4876
  Copyright terms: Public domain W3C validator