MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp7 Unicode version

Theorem elxp7 6318
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5297. (Contributed by NM, 19-Aug-2006.)
Assertion
Ref Expression
elxp7  |-  ( A  e.  ( B  X.  C )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A
)  e.  C ) ) )

Proof of Theorem elxp7
StepHypRef Expression
1 elxp6 6317 . 2  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
2 fvex 5682 . . . . 5  |-  ( 1st `  A )  e.  _V
3 fvex 5682 . . . . 5  |-  ( 2nd `  A )  e.  _V
42, 3pm3.2i 442 . . . 4  |-  ( ( 1st `  A )  e.  _V  /\  ( 2nd `  A )  e. 
_V )
5 elxp6 6317 . . . 4  |-  ( A  e.  ( _V  X.  _V )  <->  ( A  = 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V ) ) )
64, 5mpbiran2 886 . . 3  |-  ( A  e.  ( _V  X.  _V )  <->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >. )
76anbi1i 677 . 2  |-  ( ( A  e.  ( _V 
X.  _V )  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) )  <-> 
( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) ) )
81, 7bitr4i 244 1  |-  ( A  e.  ( B  X.  C )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A
)  e.  C ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2899   <.cop 3760    X. cxp 4816   ` cfv 5394   1stc1st 6286   2ndc2nd 6287
This theorem is referenced by:  xp2  6323  unielxp  6324  1stconst  6374  2ndconst  6375  fparlem1  6385  fparlem2  6386  infxpenlem  7828  1stpreima  23936  2ndpreima  23937  xpinpreima2  24109  tpr2rico  24114  sxbrsigalem0  24415  dya2iocnrect  24425  pellex  26589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-iota 5358  df-fun 5396  df-fv 5402  df-1st 6288  df-2nd 6289
  Copyright terms: Public domain W3C validator