MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elz2 Unicode version

Theorem elz2 10056
Description: Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the natural numbers. (Contributed by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
elz2  |-  ( N  e.  ZZ  <->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
Distinct variable group:    x, y, N

Proof of Theorem elz2
StepHypRef Expression
1 elznn0 10054 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
2 nn0p1nn 10019 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
32adantl 452 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  -> 
( N  +  1 )  e.  NN )
4 1nn 9773 . . . . . 6  |-  1  e.  NN
54a1i 10 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  -> 
1  e.  NN )
6 recn 8843 . . . . . . . 8  |-  ( N  e.  RR  ->  N  e.  CC )
76adantr 451 . . . . . . 7  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  ->  N  e.  CC )
8 ax-1cn 8811 . . . . . . 7  |-  1  e.  CC
9 pncan 9073 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
107, 8, 9sylancl 643 . . . . . 6  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  -> 
( ( N  + 
1 )  -  1 )  =  N )
1110eqcomd 2301 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  ->  N  =  ( ( N  +  1 )  -  1 ) )
12 rspceov 5909 . . . . 5  |-  ( ( ( N  +  1 )  e.  NN  /\  1  e.  NN  /\  N  =  ( ( N  +  1 )  - 
1 ) )  ->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
133, 5, 11, 12syl3anc 1182 . . . 4  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  ->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
144a1i 10 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  1  e.  NN )
156adantr 451 . . . . . . 7  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  N  e.  CC )
16 negsub 9111 . . . . . . 7  |-  ( ( 1  e.  CC  /\  N  e.  CC )  ->  ( 1  +  -u N )  =  ( 1  -  N ) )
178, 15, 16sylancr 644 . . . . . 6  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( 1  +  -u N )  =  ( 1  -  N ) )
18 simpr 447 . . . . . . 7  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  -> 
-u N  e.  NN0 )
19 nnnn0addcl 10011 . . . . . . 7  |-  ( ( 1  e.  NN  /\  -u N  e.  NN0 )  ->  ( 1  +  -u N )  e.  NN )
204, 18, 19sylancr 644 . . . . . 6  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( 1  +  -u N )  e.  NN )
2117, 20eqeltrrd 2371 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( 1  -  N
)  e.  NN )
22 nncan 9092 . . . . . . 7  |-  ( ( 1  e.  CC  /\  N  e.  CC )  ->  ( 1  -  (
1  -  N ) )  =  N )
238, 15, 22sylancr 644 . . . . . 6  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( 1  -  (
1  -  N ) )  =  N )
2423eqcomd 2301 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  N  =  ( 1  -  ( 1  -  N ) ) )
25 rspceov 5909 . . . . 5  |-  ( ( 1  e.  NN  /\  ( 1  -  N
)  e.  NN  /\  N  =  ( 1  -  ( 1  -  N ) ) )  ->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
2614, 21, 24, 25syl3anc 1182 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
2713, 26jaodan 760 . . 3  |-  ( ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  ->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
28 nnre 9769 . . . . . . 7  |-  ( x  e.  NN  ->  x  e.  RR )
29 nnre 9769 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  RR )
30 resubcl 9127 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  -  y
)  e.  RR )
3128, 29, 30syl2an 463 . . . . . 6  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( x  -  y
)  e.  RR )
32 letric 8937 . . . . . . . 8  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( y  <_  x  \/  x  <_  y ) )
3329, 28, 32syl2anr 464 . . . . . . 7  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( y  <_  x  \/  x  <_  y ) )
34 nnnn0 9988 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  NN0 )
35 nnnn0 9988 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  NN0 )
36 nn0sub 10030 . . . . . . . . 9  |-  ( ( y  e.  NN0  /\  x  e.  NN0 )  -> 
( y  <_  x  <->  ( x  -  y )  e.  NN0 ) )
3734, 35, 36syl2anr 464 . . . . . . . 8  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( y  <_  x  <->  ( x  -  y )  e.  NN0 ) )
38 nn0sub 10030 . . . . . . . . . 10  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  -> 
( x  <_  y  <->  ( y  -  x )  e.  NN0 ) )
3935, 34, 38syl2an 463 . . . . . . . . 9  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( x  <_  y  <->  ( y  -  x )  e.  NN0 ) )
40 nncn 9770 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  e.  CC )
41 nncn 9770 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  CC )
42 negsubdi2 9122 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  CC )  -> 
-u ( x  -  y )  =  ( y  -  x ) )
4340, 41, 42syl2an 463 . . . . . . . . . 10  |-  ( ( x  e.  NN  /\  y  e.  NN )  -> 
-u ( x  -  y )  =  ( y  -  x ) )
4443eleq1d 2362 . . . . . . . . 9  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( -u ( x  -  y )  e. 
NN0 
<->  ( y  -  x
)  e.  NN0 )
)
4539, 44bitr4d 247 . . . . . . . 8  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( x  <_  y  <->  -u ( x  -  y
)  e.  NN0 )
)
4637, 45orbi12d 690 . . . . . . 7  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( y  <_  x  \/  x  <_  y )  <->  ( ( x  -  y )  e. 
NN0  \/  -u ( x  -  y )  e. 
NN0 ) ) )
4733, 46mpbid 201 . . . . . 6  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( x  -  y )  e.  NN0  \/  -u ( x  -  y
)  e.  NN0 )
)
4831, 47jca 518 . . . . 5  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( x  -  y )  e.  RR  /\  ( ( x  -  y )  e.  NN0  \/  -u ( x  -  y
)  e.  NN0 )
) )
49 eleq1 2356 . . . . . 6  |-  ( N  =  ( x  -  y )  ->  ( N  e.  RR  <->  ( x  -  y )  e.  RR ) )
50 eleq1 2356 . . . . . . 7  |-  ( N  =  ( x  -  y )  ->  ( N  e.  NN0  <->  ( x  -  y )  e. 
NN0 ) )
51 negeq 9060 . . . . . . . 8  |-  ( N  =  ( x  -  y )  ->  -u N  =  -u ( x  -  y ) )
5251eleq1d 2362 . . . . . . 7  |-  ( N  =  ( x  -  y )  ->  ( -u N  e.  NN0  <->  -u ( x  -  y )  e. 
NN0 ) )
5350, 52orbi12d 690 . . . . . 6  |-  ( N  =  ( x  -  y )  ->  (
( N  e.  NN0  \/  -u N  e.  NN0 ) 
<->  ( ( x  -  y )  e.  NN0  \/  -u ( x  -  y
)  e.  NN0 )
) )
5449, 53anbi12d 691 . . . . 5  |-  ( N  =  ( x  -  y )  ->  (
( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  <->  ( (
x  -  y )  e.  RR  /\  (
( x  -  y
)  e.  NN0  \/  -u ( x  -  y
)  e.  NN0 )
) ) )
5548, 54syl5ibrcom 213 . . . 4  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( N  =  ( x  -  y )  ->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) ) )
5655rexlimivv 2685 . . 3  |-  ( E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y )  ->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
5727, 56impbii 180 . 2  |-  ( ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  <->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
581, 57bitri 240 1  |-  ( N  e.  ZZ  <->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557   class class class wbr 4039  (class class class)co 5874   CCcc 8751   RRcr 8752   1c1 8754    + caddc 8756    <_ cle 8884    - cmin 9053   -ucneg 9054   NNcn 9762   NN0cn0 9981   ZZcz 10040
This theorem is referenced by:  dfz2  10057  zaddcl  10075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041
  Copyright terms: Public domain W3C validator