MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elznn Structured version   Unicode version

Theorem elznn 10299
Description: Integer property expressed in terms natural numbers and nonnegative integers. (Contributed by NM, 12-Jul-2005.)
Assertion
Ref Expression
elznn  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN  \/  -u N  e.  NN0 ) ) )

Proof of Theorem elznn
StepHypRef Expression
1 elz 10286 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
2 recn 9082 . . . . . . . 8  |-  ( N  e.  RR  ->  N  e.  CC )
32negeq0d 9405 . . . . . . 7  |-  ( N  e.  RR  ->  ( N  =  0  <->  -u N  =  0 ) )
43orbi2d 684 . . . . . 6  |-  ( N  e.  RR  ->  (
( -u N  e.  NN  \/  N  =  0
)  <->  ( -u N  e.  NN  \/  -u N  =  0 ) ) )
5 elnn0 10225 . . . . . 6  |-  ( -u N  e.  NN0  <->  ( -u N  e.  NN  \/  -u N  =  0 ) )
64, 5syl6rbbr 257 . . . . 5  |-  ( N  e.  RR  ->  ( -u N  e.  NN0  <->  ( -u N  e.  NN  \/  N  =  0 ) ) )
76orbi2d 684 . . . 4  |-  ( N  e.  RR  ->  (
( N  e.  NN  \/  -u N  e.  NN0 ) 
<->  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) ) )
8 3orrot 943 . . . . 5  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( N  e.  NN  \/  -u N  e.  NN  \/  N  =  0
) )
9 3orass 940 . . . . 5  |-  ( ( N  e.  NN  \/  -u N  e.  NN  \/  N  =  0 )  <-> 
( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )
108, 9bitri 242 . . . 4  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )
117, 10syl6rbbr 257 . . 3  |-  ( N  e.  RR  ->  (
( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) 
<->  ( N  e.  NN  \/  -u N  e.  NN0 ) ) )
1211pm5.32i 620 . 2  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  RR  /\  ( N  e.  NN  \/  -u N  e.  NN0 ) ) )
131, 12bitri 242 1  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN  \/  -u N  e.  NN0 ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    \/ wo 359    /\ wa 360    \/ w3o 936    = wceq 1653    e. wcel 1726   RRcr 8991   0cc0 8992   -ucneg 9294   NNcn 10002   NN0cn0 10223   ZZcz 10284
This theorem is referenced by:  bitsf1  12960  eldmgm  24808  monotoddzzfi  27007
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-po 4505  df-so 4506  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-riota 6551  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-ltxr 9127  df-sub 9295  df-neg 9296  df-n0 10224  df-z 10285
  Copyright terms: Public domain W3C validator