MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elznn0nn Unicode version

Theorem elznn0nn 10228
Description: Integer property expressed in terms nonnegative integers and natural numbers. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
elznn0nn  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )

Proof of Theorem elznn0nn
StepHypRef Expression
1 elz 10217 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
2 andi 838 . . 3  |-  ( ( N  e.  RR  /\  ( ( N  =  0  \/  N  e.  NN )  \/  -u N  e.  NN ) )  <->  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN )
)  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
3 df-3or 937 . . . 4  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( ( N  =  0  \/  N  e.  NN )  \/  -u N  e.  NN ) )
43anbi2i 676 . . 3  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  RR  /\  ( ( N  =  0  \/  N  e.  NN )  \/  -u N  e.  NN ) ) )
5 nn0re 10163 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  RR )
65pm4.71ri 615 . . . . 5  |-  ( N  e.  NN0  <->  ( N  e.  RR  /\  N  e. 
NN0 ) )
7 elnn0 10156 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
8 orcom 377 . . . . . . 7  |-  ( ( N  e.  NN  \/  N  =  0 )  <-> 
( N  =  0  \/  N  e.  NN ) )
97, 8bitri 241 . . . . . 6  |-  ( N  e.  NN0  <->  ( N  =  0  \/  N  e.  NN ) )
109anbi2i 676 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN ) ) )
116, 10bitri 241 . . . 4  |-  ( N  e.  NN0  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN ) ) )
1211orbi1i 507 . . 3  |-  ( ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  <->  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN )
)  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
132, 4, 123bitr4i 269 . 2  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
141, 13bitri 241 1  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    \/ wo 358    /\ wa 359    \/ w3o 935    = wceq 1649    e. wcel 1717   RRcr 8923   0cc0 8924   -ucneg 9225   NNcn 9933   NN0cn0 10154   ZZcz 10215
This theorem is referenced by:  zindd  10304  expcl2lem  11321  mulexpz  11348  expaddz  11352  expmulz  11354  absexpz  12038  bitsfzo  12875  pcid  13174  mulgsubcl  14832  mulgneg  14836  ghmmulg  14946  prmirred  16699  tgpmulg  18045  dvexp3  19730  gxsuc  21709  ipasslem3  22183
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-i2m1 8992  ax-1ne0 8993  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-recs 6570  df-rdg 6605  df-neg 9227  df-nn 9934  df-n0 10155  df-z 10216
  Copyright terms: Public domain W3C validator