Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2d Structured version   Unicode version

Theorem en2d 7146
 Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
en2d.1
en2d.2
en2d.3
en2d.4
en2d.5
Assertion
Ref Expression
en2d
Distinct variable groups:   ,,   ,,   ,   ,   ,,
Allowed substitution hints:   ()   ()

Proof of Theorem en2d
StepHypRef Expression
1 en2d.1 . 2
2 en2d.2 . 2
3 eqid 2438 . . 3
4 en2d.3 . . . 4
54imp 420 . . 3
6 en2d.4 . . . 4
76imp 420 . . 3
8 en2d.5 . . 3
93, 5, 7, 8f1od 6297 . 2
10 f1oen2g 7127 . 2
111, 2, 9, 10syl3anc 1185 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360   wceq 1653   wcel 1726  cvv 2958   class class class wbr 4215   cmpt 4269  wf1o 5456   cen 7109 This theorem is referenced by:  en2i  7148  map1  7188  gicsubgen  15070  lzenom  26842 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-en 7113
 Copyright terms: Public domain W3C validator