Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2lp Unicode version

Theorem en2lp 7317
 Description: No class has 2-cycle membership loops. Theorem 7X(b) of [Enderton] p. 206. (Contributed by NM, 16-Oct-1996.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
en2lp

Proof of Theorem en2lp
StepHypRef Expression
1 zfregfr 7316 . . 3
2 efrn2lp 4375 . . 3
31, 2mpan 651 . 2
4 elex 2796 . . . 4
5 elex 2796 . . . 4
64, 5anim12i 549 . . 3
76con3i 127 . 2
83, 7pm2.61i 156 1
 Colors of variables: wff set class Syntax hints:   wn 3   wa 358   wcel 1684  cvv 2788   cep 4303   wfr 4349 This theorem is referenced by:  preleq  7318  suc11reg  7320  axunndlem1  8217  axacndlem5  8233  tratrb  28299  tratrbVD  28637 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-reg 7306 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-eprel 4305  df-fr 4352
 Copyright terms: Public domain W3C validator