MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2top Unicode version

Theorem en2top 16739
Description: If a topology has two elements, it is the indiscrete topology. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
en2top  |-  ( J  e.  (TopOn `  X
)  ->  ( J  ~~  2o  <->  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) ) )

Proof of Theorem en2top
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 447 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  J  ~~  2o )
2 toponss 16683 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  J )  ->  x  C_  X )
32ad2ant2rl 729 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  ( X  =  (/)  /\  x  e.  J ) )  ->  x  C_  X )
4 simprl 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  ( X  =  (/)  /\  x  e.  J ) )  ->  X  =  (/) )
5 sseq0 3499 . . . . . . . . . . . . . . . . 17  |-  ( ( x  C_  X  /\  X  =  (/) )  ->  x  =  (/) )
63, 4, 5syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  ( X  =  (/)  /\  x  e.  J ) )  ->  x  =  (/) )
7 elsn 3668 . . . . . . . . . . . . . . . 16  |-  ( x  e.  { (/) }  <->  x  =  (/) )
86, 7sylibr 203 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  ( X  =  (/)  /\  x  e.  J ) )  ->  x  e.  { (/) } )
98expr 598 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  (
x  e.  J  ->  x  e.  { (/) } ) )
109ssrdv 3198 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  J  C_ 
{ (/) } )
11 topontop 16680 . . . . . . . . . . . . . . . 16  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
12 0opn 16666 . . . . . . . . . . . . . . . 16  |-  ( J  e.  Top  ->  (/)  e.  J
)
1311, 12syl 15 . . . . . . . . . . . . . . 15  |-  ( J  e.  (TopOn `  X
)  ->  (/)  e.  J
)
1413ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  (/)  e.  J
)
1514snssd 3776 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  { (/) } 
C_  J )
1610, 15eqssd 3209 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  J  =  { (/) } )
17 0ex 4166 . . . . . . . . . . . . 13  |-  (/)  e.  _V
1817ensn1 6941 . . . . . . . . . . . 12  |-  { (/) } 
~~  1o
1916, 18syl6eqbr 4076 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  J  ~~  1o )
2019olcd 382 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  ( J  =  (/)  \/  J  ~~  1o ) )
21 sdom2en01 7944 . . . . . . . . . 10  |-  ( J 
~<  2o  <->  ( J  =  (/)  \/  J  ~~  1o ) )
2220, 21sylibr 203 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  J  ~<  2o )
23 sdomnen 6906 . . . . . . . . 9  |-  ( J 
~<  2o  ->  -.  J  ~~  2o )
2422, 23syl 15 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  -.  J  ~~  2o )
2524ex 423 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  ( X  =  (/)  ->  -.  J  ~~  2o ) )
2625necon2ad 2507 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  ( J  ~~  2o  ->  X  =/=  (/) ) )
271, 26mpd 14 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  X  =/=  (/) )
2827necomd 2542 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  (/)  =/=  X
)
2913adantr 451 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  (/)  e.  J
)
30 toponmax 16682 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
3130adantr 451 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  X  e.  J )
32 en2eqpr 7653 . . . . 5  |-  ( ( J  ~~  2o  /\  (/) 
e.  J  /\  X  e.  J )  ->  ( (/) 
=/=  X  ->  J  =  { (/) ,  X }
) )
331, 29, 31, 32syl3anc 1182 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  ( (/) 
=/=  X  ->  J  =  { (/) ,  X }
) )
3428, 33mpd 14 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  J  =  { (/) ,  X }
)
3534, 27jca 518 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )
36 simprl 732 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )  ->  J  =  { (/)
,  X } )
3717a1i 10 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )  ->  (/)  e.  _V )
3830adantr 451 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )  ->  X  e.  J
)
39 simprr 733 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )  ->  X  =/=  (/) )
4039necomd 2542 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )  ->  (/)  =/=  X )
41 pr2nelem 7650 . . . 4  |-  ( (
(/)  e.  _V  /\  X  e.  J  /\  (/)  =/=  X
)  ->  { (/) ,  X }  ~~  2o )
4237, 38, 40, 41syl3anc 1182 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )  ->  { (/) ,  X }  ~~  2o )
4336, 42eqbrtrd 4059 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )  ->  J  ~~  2o )
4435, 43impbida 805 1  |-  ( J  e.  (TopOn `  X
)  ->  ( J  ~~  2o  <->  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   _Vcvv 2801    C_ wss 3165   (/)c0 3468   {csn 3653   {cpr 3654   class class class wbr 4039   ` cfv 5271   1oc1o 6488   2oc2o 6489    ~~ cen 6876    ~< csdm 6878   Topctop 16647  TopOnctopon 16648
This theorem is referenced by:  hmphindis  17504
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6495  df-2o 6496  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588  df-top 16652  df-topon 16655
  Copyright terms: Public domain W3C validator