Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  en3lpVD Unicode version

Theorem en3lpVD 28621
Description: Virtual deduction proof of en3lp 7418. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en3lpVD  |-  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A )

Proof of Theorem en3lpVD
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2.1 406 . . 3  |-  ( -. 
{ A ,  B ,  C }  =  (/)  \/ 
{ A ,  B ,  C }  =  (/) )
2 df-ne 2448 . . . . 5  |-  ( { A ,  B ,  C }  =/=  (/)  <->  -.  { A ,  B ,  C }  =  (/) )
32bicomi 193 . . . 4  |-  ( -. 
{ A ,  B ,  C }  =  (/)  <->  { A ,  B ,  C }  =/=  (/) )
43orbi1i 506 . . 3  |-  ( ( -.  { A ,  B ,  C }  =  (/)  \/  { A ,  B ,  C }  =  (/) )  <->  ( { A ,  B ,  C }  =/=  (/)  \/  { A ,  B ,  C }  =  (/) ) )
51, 4mpbi 199 . 2  |-  ( { A ,  B ,  C }  =/=  (/)  \/  { A ,  B ,  C }  =  (/) )
6 zfregs2 7415 . . . 4  |-  ( { A ,  B ,  C }  =/=  (/)  ->  -.  A. x  e.  { A ,  B ,  C } E. y ( y  e. 
{ A ,  B ,  C }  /\  y  e.  x ) )
7 en3lplem2VD 28620 . . . . . . 7  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  E. y
( y  e.  { A ,  B ,  C }  /\  y  e.  x ) ) )
87alrimiv 1617 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  A. x ( x  e.  { A ,  B ,  C }  ->  E. y ( y  e.  { A ,  B ,  C }  /\  y  e.  x
) ) )
9 df-ral 2548 . . . . . 6  |-  ( A. x  e.  { A ,  B ,  C } E. y ( y  e. 
{ A ,  B ,  C }  /\  y  e.  x )  <->  A. x
( x  e.  { A ,  B ,  C }  ->  E. y
( y  e.  { A ,  B ,  C }  /\  y  e.  x ) ) )
108, 9sylibr 203 . . . . 5  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  A. x  e.  { A ,  B ,  C } E. y ( y  e.  { A ,  B ,  C }  /\  y  e.  x
) )
1110con3i 127 . . . 4  |-  ( -. 
A. x  e.  { A ,  B ,  C } E. y ( y  e.  { A ,  B ,  C }  /\  y  e.  x
)  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A )
)
126, 11syl 15 . . 3  |-  ( { A ,  B ,  C }  =/=  (/)  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A
) )
13 idn1 28342 . . . . . . 7  |-  (. { A ,  B ,  C }  =  (/)  ->.  { A ,  B ,  C }  =  (/) ).
14 noel 3459 . . . . . . 7  |-  -.  C  e.  (/)
15 eleq2 2344 . . . . . . . . 9  |-  ( { A ,  B ,  C }  =  (/)  ->  ( C  e.  { A ,  B ,  C }  <->  C  e.  (/) ) )
1615notbid 285 . . . . . . . 8  |-  ( { A ,  B ,  C }  =  (/)  ->  ( -.  C  e.  { A ,  B ,  C }  <->  -.  C  e.  (/) ) )
1716biimprd 214 . . . . . . 7  |-  ( { A ,  B ,  C }  =  (/)  ->  ( -.  C  e.  (/)  ->  -.  C  e.  { A ,  B ,  C }
) )
1813, 14, 17e10 28467 . . . . . 6  |-  (. { A ,  B ,  C }  =  (/)  ->.  -.  C  e.  { A ,  B ,  C } ).
19 tpid3g 3741 . . . . . . 7  |-  ( C  e.  A  ->  C  e.  { A ,  B ,  C } )
2019con3i 127 . . . . . 6  |-  ( -.  C  e.  { A ,  B ,  C }  ->  -.  C  e.  A
)
2118, 20e1_ 28399 . . . . 5  |-  (. { A ,  B ,  C }  =  (/)  ->.  -.  C  e.  A ).
22 simp3 957 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  C  e.  A )
2322con3i 127 . . . . 5  |-  ( -.  C  e.  A  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A
) )
2421, 23e1_ 28399 . . . 4  |-  (. { A ,  B ,  C }  =  (/)  ->.  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A ) ).
2524in1 28339 . . 3  |-  ( { A ,  B ,  C }  =  (/)  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A
) )
2612, 25jaoi 368 . 2  |-  ( ( { A ,  B ,  C }  =/=  (/)  \/  { A ,  B ,  C }  =  (/) )  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A
) )
275, 26ax-mp 8 1  |-  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   (/)c0 3455   {ctp 3642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-reg 7306  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-vd1 28338  df-vd2 28347  df-vd3 28359
  Copyright terms: Public domain W3C validator