Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  en3lplem1VD Structured version   Unicode version

Theorem en3lplem1VD 28955
 Description: Virtual deduction proof of en3lplem1 7670. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en3lplem1VD
Distinct variable groups:   ,,   ,,   ,,

Proof of Theorem en3lplem1VD
StepHypRef Expression
1 idn1 28665 . . . . . . 7
2 simp3 959 . . . . . . 7
31, 2e1_ 28728 . . . . . 6
4 tpid3g 3919 . . . . . 6
53, 4e1_ 28728 . . . . 5
6 idn2 28714 . . . . . 6
7 eleq2 2497 . . . . . . 7
87biimprd 215 . . . . . 6
96, 3, 8e21 28842 . . . . 5
10 pm3.2 435 . . . . 5
115, 9, 10e12 28836 . . . 4
12 elex22 2967 . . . 4
1311, 12e2 28732 . . 3
1413in2 28706 . 2
1514in1 28662 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   w3a 936  wex 1550   wceq 1652   wcel 1725  ctp 3816 This theorem is referenced by:  en3lplem2VD  28956 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-un 3325  df-sn 3820  df-pr 3821  df-tp 3822  df-vd1 28661  df-vd2 28670
 Copyright terms: Public domain W3C validator