MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3lplem2 Unicode version

Theorem en3lplem2 7564
Description: Lemma for en3lp 7565. (Contributed by Alan Sare, 28-Oct-2011.)
Assertion
Ref Expression
en3lplem2  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( x  i^i  { A ,  B ,  C }
)  =/=  (/) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem en3lplem2
StepHypRef Expression
1 en3lplem1 7563 . . . . 5  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  =  A  ->  ( x  i^i 
{ A ,  B ,  C } )  =/=  (/) ) )
2 en3lplem1 7563 . . . . . . . 8  |-  ( ( B  e.  C  /\  C  e.  A  /\  A  e.  B )  ->  ( x  =  B  ->  ( x  i^i 
{ B ,  C ,  A } )  =/=  (/) ) )
323comr 1160 . . . . . . 7  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  =  B  ->  ( x  i^i 
{ B ,  C ,  A } )  =/=  (/) ) )
43a1d 22 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( x  =  B  ->  (
x  i^i  { B ,  C ,  A }
)  =/=  (/) ) ) )
5 tprot 3814 . . . . . . . . 9  |-  { A ,  B ,  C }  =  { B ,  C ,  A }
65ineq2i 3455 . . . . . . . 8  |-  ( x  i^i  { A ,  B ,  C }
)  =  ( x  i^i  { B ,  C ,  A }
)
76neeq1i 2539 . . . . . . 7  |-  ( ( x  i^i  { A ,  B ,  C }
)  =/=  (/)  <->  ( x  i^i  { B ,  C ,  A } )  =/=  (/) )
87bicomi 193 . . . . . 6  |-  ( ( x  i^i  { B ,  C ,  A }
)  =/=  (/)  <->  ( x  i^i  { A ,  B ,  C } )  =/=  (/) )
94, 8syl8ib 222 . . . . 5  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( x  =  B  ->  (
x  i^i  { A ,  B ,  C }
)  =/=  (/) ) ) )
10 jao 498 . . . . 5  |-  ( ( x  =  A  -> 
( x  i^i  { A ,  B ,  C } )  =/=  (/) )  -> 
( ( x  =  B  ->  ( x  i^i  { A ,  B ,  C } )  =/=  (/) )  ->  ( ( x  =  A  \/  x  =  B )  ->  ( x  i^i  { A ,  B ,  C } )  =/=  (/) ) ) )
111, 9, 10sylsyld 52 . . . 4  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( ( x  =  A  \/  x  =  B )  ->  ( x  i^i  { A ,  B ,  C } )  =/=  (/) ) ) )
1211imp 418 . . 3  |-  ( ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A
)  /\  x  e.  { A ,  B ,  C } )  ->  (
( x  =  A  \/  x  =  B )  ->  ( x  i^i  { A ,  B ,  C } )  =/=  (/) ) )
13 en3lplem1 7563 . . . . . . 7  |-  ( ( C  e.  A  /\  A  e.  B  /\  B  e.  C )  ->  ( x  =  C  ->  ( x  i^i 
{ C ,  A ,  B } )  =/=  (/) ) )
14133coml 1159 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  =  C  ->  ( x  i^i 
{ C ,  A ,  B } )  =/=  (/) ) )
1514a1d 22 . . . . 5  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( x  =  C  ->  (
x  i^i  { C ,  A ,  B }
)  =/=  (/) ) ) )
16 tprot 3814 . . . . . . 7  |-  { C ,  A ,  B }  =  { A ,  B ,  C }
1716ineq2i 3455 . . . . . 6  |-  ( x  i^i  { C ,  A ,  B }
)  =  ( x  i^i  { A ,  B ,  C }
)
1817neeq1i 2539 . . . . 5  |-  ( ( x  i^i  { C ,  A ,  B }
)  =/=  (/)  <->  ( x  i^i  { A ,  B ,  C } )  =/=  (/) )
1915, 18syl8ib 222 . . . 4  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( x  =  C  ->  (
x  i^i  { A ,  B ,  C }
)  =/=  (/) ) ) )
2019imp 418 . . 3  |-  ( ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A
)  /\  x  e.  { A ,  B ,  C } )  ->  (
x  =  C  -> 
( x  i^i  { A ,  B ,  C } )  =/=  (/) ) )
21 idd 21 . . . . . . 7  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  x  e. 
{ A ,  B ,  C } ) )
22 dftp2 3769 . . . . . . . 8  |-  { A ,  B ,  C }  =  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) }
2322eleq2i 2430 . . . . . . 7  |-  ( x  e.  { A ,  B ,  C }  <->  x  e.  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) } )
2421, 23syl6ib 217 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  x  e. 
{ x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) } ) )
25 abid 2354 . . . . . 6  |-  ( x  e.  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) }  <->  ( x  =  A  \/  x  =  B  \/  x  =  C ) )
2624, 25syl6ib 217 . . . . 5  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( x  =  A  \/  x  =  B  \/  x  =  C ) ) )
27 df-3or 936 . . . . 5  |-  ( ( x  =  A  \/  x  =  B  \/  x  =  C )  <->  ( ( x  =  A  \/  x  =  B )  \/  x  =  C ) )
2826, 27syl6ib 217 . . . 4  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( ( x  =  A  \/  x  =  B )  \/  x  =  C
) ) )
2928imp 418 . . 3  |-  ( ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A
)  /\  x  e.  { A ,  B ,  C } )  ->  (
( x  =  A  \/  x  =  B )  \/  x  =  C ) )
3012, 20, 29mpjaod 370 . 2  |-  ( ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A
)  /\  x  e.  { A ,  B ,  C } )  ->  (
x  i^i  { A ,  B ,  C }
)  =/=  (/) )
3130ex 423 1  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( x  i^i  { A ,  B ,  C }
)  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    \/ w3o 934    /\ w3a 935    = wceq 1647    e. wcel 1715   {cab 2352    =/= wne 2529    i^i cin 3237   (/)c0 3543   {ctp 3731
This theorem is referenced by:  en3lp  7565
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-v 2875  df-dif 3241  df-un 3243  df-in 3245  df-nul 3544  df-sn 3735  df-pr 3736  df-tp 3737
  Copyright terms: Public domain W3C validator