MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en4 Unicode version

Theorem en4 7112
Description: A set equinumerous to ordinal 4 is a quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
en4  |-  ( A 
~~  4o  ->  E. x E. y E. z E. w  A  =  ( { x ,  y }  u.  { z ,  w } ) )
Distinct variable group:    x, w, y, z, A

Proof of Theorem en4
StepHypRef Expression
1 3onn 6655 . 2  |-  3o  e.  om
2 df-4o 6498 . 2  |-  4o  =  suc  3o
3 en3 7111 . 2  |-  ( ( A  \  { x } )  ~~  3o  ->  E. y E. z E. w ( A  \  { x } )  =  { y ,  z ,  w }
)
4 qdassr 3740 . . . . 5  |-  ( { x ,  y }  u.  { z ,  w } )  =  ( { x }  u.  { y ,  z ,  w } )
54enp1ilem 7108 . . . 4  |-  ( x  e.  A  ->  (
( A  \  {
x } )  =  { y ,  z ,  w }  ->  A  =  ( { x ,  y }  u.  { z ,  w }
) ) )
65eximdv 1612 . . 3  |-  ( x  e.  A  ->  ( E. w ( A  \  { x } )  =  { y ,  z ,  w }  ->  E. w  A  =  ( { x ,  y }  u.  {
z ,  w }
) ) )
762eximdv 1614 . 2  |-  ( x  e.  A  ->  ( E. y E. z E. w ( A  \  { x } )  =  { y ,  z ,  w }  ->  E. y E. z E. w  A  =  ( { x ,  y }  u.  { z ,  w } ) ) )
81, 2, 3, 7enp1i 7109 1  |-  ( A 
~~  4o  ->  E. x E. y E. z E. w  A  =  ( { x ,  y }  u.  { z ,  w } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1531    = wceq 1632    e. wcel 1696    \ cdif 3162    u. cun 3163   {csn 3653   {cpr 3654   {ctp 3655   class class class wbr 4039   3oc3o 6490   4oc4o 6491    ~~ cen 6876
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6495  df-2o 6496  df-3o 6497  df-4o 6498  df-er 6676  df-en 6880  df-fin 6883
  Copyright terms: Public domain W3C validator