MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfin1ai Unicode version

Theorem enfin1ai 8026
Description: Ia-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
enfin1ai  |-  ( A 
~~  B  ->  ( A  e. FinIa  ->  B  e. FinIa ) )

Proof of Theorem enfin1ai
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensym 6926 . . 3  |-  ( A 
~~  B  ->  B  ~~  A )
2 bren 6887 . . 3  |-  ( B 
~~  A  <->  E. f 
f : B -1-1-onto-> A )
31, 2sylib 188 . 2  |-  ( A 
~~  B  ->  E. f 
f : B -1-1-onto-> A )
4 elpwi 3646 . . . . . . 7  |-  ( x  e.  ~P B  ->  x  C_  B )
5 simplr 731 . . . . . . . . 9  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  ->  A  e. FinIa )
6 imassrn 5041 . . . . . . . . . 10  |-  ( f
" x )  C_  ran  f
7 f1of 5488 . . . . . . . . . . . 12  |-  ( f : B -1-1-onto-> A  ->  f : B
--> A )
87ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
f : B --> A )
9 frn 5411 . . . . . . . . . . 11  |-  ( f : B --> A  ->  ran  f  C_  A )
108, 9syl 15 . . . . . . . . . 10  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  ->  ran  f  C_  A )
116, 10syl5ss 3203 . . . . . . . . 9  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " x
)  C_  A )
12 fin1ai 7935 . . . . . . . . 9  |-  ( ( A  e. FinIa  /\  ( f " x )  C_  A )  ->  (
( f " x
)  e.  Fin  \/  ( A  \  (
f " x ) )  e.  Fin )
)
135, 11, 12syl2anc 642 . . . . . . . 8  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( ( f "
x )  e.  Fin  \/  ( A  \  (
f " x ) )  e.  Fin )
)
14 f1of1 5487 . . . . . . . . . . . 12  |-  ( f : B -1-1-onto-> A  ->  f : B -1-1-> A )
1514ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
f : B -1-1-> A
)
16 simpr 447 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  ->  x  C_  B )
17 vex 2804 . . . . . . . . . . . 12  |-  x  e. 
_V
1817a1i 10 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  ->  x  e.  _V )
19 f1imaeng 6937 . . . . . . . . . . 11  |-  ( ( f : B -1-1-> A  /\  x  C_  B  /\  x  e.  _V )  ->  ( f " x
)  ~~  x )
2015, 16, 18, 19syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " x
)  ~~  x )
21 enfi 7095 . . . . . . . . . 10  |-  ( ( f " x ) 
~~  x  ->  (
( f " x
)  e.  Fin  <->  x  e.  Fin ) )
2220, 21syl 15 . . . . . . . . 9  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( ( f "
x )  e.  Fin  <->  x  e.  Fin ) )
23 df-f1 5276 . . . . . . . . . . . . . 14  |-  ( f : B -1-1-> A  <->  ( f : B --> A  /\  Fun  `' f ) )
2423simprbi 450 . . . . . . . . . . . . 13  |-  ( f : B -1-1-> A  ->  Fun  `' f )
25 imadif 5343 . . . . . . . . . . . . 13  |-  ( Fun  `' f  ->  ( f
" ( B  \  x ) )  =  ( ( f " B )  \  (
f " x ) ) )
2615, 24, 253syl 18 . . . . . . . . . . . 12  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " ( B  \  x ) )  =  ( ( f
" B )  \ 
( f " x
) ) )
27 f1ofo 5495 . . . . . . . . . . . . . . 15  |-  ( f : B -1-1-onto-> A  ->  f : B -onto-> A )
28 foima 5472 . . . . . . . . . . . . . . 15  |-  ( f : B -onto-> A  -> 
( f " B
)  =  A )
2927, 28syl 15 . . . . . . . . . . . . . 14  |-  ( f : B -1-1-onto-> A  ->  ( f " B )  =  A )
3029ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " B
)  =  A )
3130difeq1d 3306 . . . . . . . . . . . 12  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( ( f " B )  \  (
f " x ) )  =  ( A 
\  ( f "
x ) ) )
3226, 31eqtrd 2328 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " ( B  \  x ) )  =  ( A  \ 
( f " x
) ) )
33 difss 3316 . . . . . . . . . . . . 13  |-  ( B 
\  x )  C_  B
3433a1i 10 . . . . . . . . . . . 12  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( B  \  x
)  C_  B )
35 vex 2804 . . . . . . . . . . . . . . 15  |-  f  e. 
_V
367adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  ->  f : B --> A )
37 dmfex 5440 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  _V  /\  f : B --> A )  ->  B  e.  _V )
3835, 36, 37sylancr 644 . . . . . . . . . . . . . 14  |-  ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  ->  B  e.  _V )
3938adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  ->  B  e.  _V )
40 difexg 4178 . . . . . . . . . . . . 13  |-  ( B  e.  _V  ->  ( B  \  x )  e. 
_V )
4139, 40syl 15 . . . . . . . . . . . 12  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( B  \  x
)  e.  _V )
42 f1imaeng 6937 . . . . . . . . . . . 12  |-  ( ( f : B -1-1-> A  /\  ( B  \  x
)  C_  B  /\  ( B  \  x
)  e.  _V )  ->  ( f " ( B  \  x ) ) 
~~  ( B  \  x ) )
4315, 34, 41, 42syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " ( B  \  x ) ) 
~~  ( B  \  x ) )
4432, 43eqbrtrrd 4061 . . . . . . . . . 10  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( A  \  (
f " x ) )  ~~  ( B 
\  x ) )
45 enfi 7095 . . . . . . . . . 10  |-  ( ( A  \  ( f
" x ) ) 
~~  ( B  \  x )  ->  (
( A  \  (
f " x ) )  e.  Fin  <->  ( B  \  x )  e.  Fin ) )
4644, 45syl 15 . . . . . . . . 9  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( ( A  \ 
( f " x
) )  e.  Fin  <->  ( B  \  x )  e. 
Fin ) )
4722, 46orbi12d 690 . . . . . . . 8  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( ( ( f
" x )  e. 
Fin  \/  ( A  \  ( f " x
) )  e.  Fin ) 
<->  ( x  e.  Fin  \/  ( B  \  x
)  e.  Fin )
) )
4813, 47mpbid 201 . . . . . . 7  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( x  e.  Fin  \/  ( B  \  x
)  e.  Fin )
)
494, 48sylan2 460 . . . . . 6  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  e.  ~P B
)  ->  ( x  e.  Fin  \/  ( B 
\  x )  e. 
Fin ) )
5049ralrimiva 2639 . . . . 5  |-  ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  ->  A. x  e.  ~P  B ( x  e.  Fin  \/  ( B  \  x )  e. 
Fin ) )
51 isfin1a 7934 . . . . . 6  |-  ( B  e.  _V  ->  ( B  e. FinIa 
<-> 
A. x  e.  ~P  B ( x  e. 
Fin  \/  ( B  \  x )  e.  Fin ) ) )
5238, 51syl 15 . . . . 5  |-  ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  ->  ( B  e. FinIa 
<-> 
A. x  e.  ~P  B ( x  e. 
Fin  \/  ( B  \  x )  e.  Fin ) ) )
5350, 52mpbird 223 . . . 4  |-  ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  ->  B  e. FinIa
)
5453ex 423 . . 3  |-  ( f : B -1-1-onto-> A  ->  ( A  e. FinIa  ->  B  e. FinIa ) )
5554exlimiv 1624 . 2  |-  ( E. f  f : B -1-1-onto-> A  ->  ( A  e. FinIa  ->  B  e. FinIa
) )
563, 55syl 15 1  |-  ( A 
~~  B  ->  ( A  e. FinIa  ->  B  e. FinIa ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    \ cdif 3162    C_ wss 3165   ~Pcpw 3638   class class class wbr 4039   `'ccnv 4704   ran crn 4706   "cima 4708   Fun wfun 5265   -->wf 5267   -1-1->wf1 5268   -onto->wfo 5269   -1-1-onto->wf1o 5270    ~~ cen 6876   Fincfn 6879  FinIacfin1a 7920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-er 6676  df-en 6880  df-fin 6883  df-fin1a 7927
  Copyright terms: Public domain W3C validator