MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfin2i Unicode version

Theorem enfin2i 7963
Description: II-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
enfin2i  |-  ( A 
~~  B  ->  ( A  e. FinII  ->  B  e. FinII ) )

Proof of Theorem enfin2i
Dummy variables  f  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6887 . . 3  |-  ( A 
~~  B  <->  E. f 
f : A -1-1-onto-> B )
2 elpwi 3646 . . . . . . 7  |-  ( x  e.  ~P ~P B  ->  x  C_  ~P B
)
3 imauni 5788 . . . . . . . . . . 11  |-  ( f
" U. { y  e.  ~P A  | 
( f " y
)  e.  x }
)  =  U_ z  e.  { y  e.  ~P A  |  ( f " y )  e.  x }  ( f
" z )
4 vex 2804 . . . . . . . . . . . . 13  |-  f  e. 
_V
5 imaexg 5042 . . . . . . . . . . . . 13  |-  ( f  e.  _V  ->  (
f " z )  e.  _V )
64, 5ax-mp 8 . . . . . . . . . . . 12  |-  ( f
" z )  e. 
_V
76dfiun2 3953 . . . . . . . . . . 11  |-  U_ z  e.  { y  e.  ~P A  |  ( f " y )  e.  x }  ( f
" z )  = 
U. { w  |  E. z  e.  {
y  e.  ~P A  |  ( f "
y )  e.  x } w  =  (
f " z ) }
83, 7eqtri 2316 . . . . . . . . . 10  |-  ( f
" U. { y  e.  ~P A  | 
( f " y
)  e.  x }
)  =  U. {
w  |  E. z  e.  { y  e.  ~P A  |  ( f " y )  e.  x } w  =  ( f " z
) }
9 imaeq2 5024 . . . . . . . . . . . . . . 15  |-  ( y  =  z  ->  (
f " y )  =  ( f "
z ) )
109eleq1d 2362 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
( f " y
)  e.  x  <->  ( f " z )  e.  x ) )
1110rexrab 2942 . . . . . . . . . . . . 13  |-  ( E. z  e.  { y  e.  ~P A  | 
( f " y
)  e.  x }
w  =  ( f
" z )  <->  E. z  e.  ~P  A ( ( f " z )  e.  x  /\  w  =  ( f "
z ) ) )
12 eleq1 2356 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( f "
z )  ->  (
w  e.  x  <->  ( f " z )  e.  x ) )
1312biimparc 473 . . . . . . . . . . . . . . 15  |-  ( ( ( f " z
)  e.  x  /\  w  =  ( f " z ) )  ->  w  e.  x
)
1413rexlimivw 2676 . . . . . . . . . . . . . 14  |-  ( E. z  e.  ~P  A
( ( f "
z )  e.  x  /\  w  =  (
f " z ) )  ->  w  e.  x )
15 cnvimass 5049 . . . . . . . . . . . . . . . . . 18  |-  ( `' f " w ) 
C_  dom  f
16 f1odm 5492 . . . . . . . . . . . . . . . . . . 19  |-  ( f : A -1-1-onto-> B  ->  dom  f  =  A )
1716ad3antrrr 710 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  w  e.  x
)  ->  dom  f  =  A )
1815, 17syl5sseq 3239 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  w  e.  x
)  ->  ( `' f " w )  C_  A )
194cnvex 5225 . . . . . . . . . . . . . . . . . . 19  |-  `' f  e.  _V
20 imaexg 5042 . . . . . . . . . . . . . . . . . . 19  |-  ( `' f  e.  _V  ->  ( `' f " w
)  e.  _V )
2119, 20ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  ( `' f " w )  e.  _V
2221elpw 3644 . . . . . . . . . . . . . . . . 17  |-  ( ( `' f " w
)  e.  ~P A  <->  ( `' f " w
)  C_  A )
2318, 22sylibr 203 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  w  e.  x
)  ->  ( `' f " w )  e. 
~P A )
24 f1ofo 5495 . . . . . . . . . . . . . . . . . . . 20  |-  ( f : A -1-1-onto-> B  ->  f : A -onto-> B )
2524ad3antrrr 710 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  w  e.  x
)  ->  f : A -onto-> B )
26 simprl 732 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  x  C_  ~P B )
2726sselda 3193 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  w  e.  x
)  ->  w  e.  ~P B )
28 elpwi 3646 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  ~P B  ->  w  C_  B )
2927, 28syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  w  e.  x
)  ->  w  C_  B
)
30 foimacnv 5506 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : A -onto-> B  /\  w  C_  B )  ->  ( f "
( `' f "
w ) )  =  w )
3125, 29, 30syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  w  e.  x
)  ->  ( f " ( `' f
" w ) )  =  w )
3231eqcomd 2301 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  w  e.  x
)  ->  w  =  ( f " ( `' f " w
) ) )
33 simpr 447 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  w  e.  x
)  ->  w  e.  x )
3432, 33eqeltrrd 2371 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  w  e.  x
)  ->  ( f " ( `' f
" w ) )  e.  x )
35 imaeq2 5024 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( `' f
" w )  -> 
( f " z
)  =  ( f
" ( `' f
" w ) ) )
3635eleq1d 2362 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( `' f
" w )  -> 
( ( f "
z )  e.  x  <->  ( f " ( `' f " w ) )  e.  x ) )
3735eqeq2d 2307 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( `' f
" w )  -> 
( w  =  ( f " z )  <-> 
w  =  ( f
" ( `' f
" w ) ) ) )
3836, 37anbi12d 691 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( `' f
" w )  -> 
( ( ( f
" z )  e.  x  /\  w  =  ( f " z
) )  <->  ( (
f " ( `' f " w ) )  e.  x  /\  w  =  ( f " ( `' f
" w ) ) ) ) )
3938rspcev 2897 . . . . . . . . . . . . . . . 16  |-  ( ( ( `' f "
w )  e.  ~P A  /\  ( ( f
" ( `' f
" w ) )  e.  x  /\  w  =  ( f "
( `' f "
w ) ) ) )  ->  E. z  e.  ~P  A ( ( f " z )  e.  x  /\  w  =  ( f "
z ) ) )
4023, 34, 32, 39syl12anc 1180 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  w  e.  x
)  ->  E. z  e.  ~P  A ( ( f " z )  e.  x  /\  w  =  ( f "
z ) ) )
4140ex 423 . . . . . . . . . . . . . 14  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  ( w  e.  x  ->  E. z  e.  ~P  A ( ( f " z )  e.  x  /\  w  =  ( f "
z ) ) ) )
4214, 41impbid2 195 . . . . . . . . . . . . 13  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  ( E. z  e.  ~P  A ( ( f " z )  e.  x  /\  w  =  ( f "
z ) )  <->  w  e.  x ) )
4311, 42syl5bb 248 . . . . . . . . . . . 12  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  ( E. z  e.  { y  e.  ~P A  |  ( f " y )  e.  x } w  =  ( f " z
)  <->  w  e.  x
) )
4443abbi1dv 2412 . . . . . . . . . . 11  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  { w  |  E. z  e.  {
y  e.  ~P A  |  ( f "
y )  e.  x } w  =  (
f " z ) }  =  x )
4544unieqd 3854 . . . . . . . . . 10  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  U. { w  |  E. z  e.  {
y  e.  ~P A  |  ( f "
y )  e.  x } w  =  (
f " z ) }  =  U. x
)
468, 45syl5eq 2340 . . . . . . . . 9  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  ( f " U. { y  e.  ~P A  |  ( f " y )  e.  x } )  = 
U. x )
47 simplr 731 . . . . . . . . . . 11  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  A  e. FinII )
48 ssrab2 3271 . . . . . . . . . . . 12  |-  { y  e.  ~P A  | 
( f " y
)  e.  x }  C_ 
~P A
4948a1i 10 . . . . . . . . . . 11  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  { y  e. 
~P A  |  ( f " y )  e.  x }  C_  ~P A )
50 simprrl 740 . . . . . . . . . . . . . 14  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  x  =/=  (/) )
51 n0 3477 . . . . . . . . . . . . . 14  |-  ( x  =/=  (/)  <->  E. w  w  e.  x )
5250, 51sylib 188 . . . . . . . . . . . . 13  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  E. w  w  e.  x )
53 imaeq2 5024 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( `' f
" w )  -> 
( f " y
)  =  ( f
" ( `' f
" w ) ) )
5453eleq1d 2362 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( `' f
" w )  -> 
( ( f "
y )  e.  x  <->  ( f " ( `' f " w ) )  e.  x ) )
5554rspcev 2897 . . . . . . . . . . . . . . . 16  |-  ( ( ( `' f "
w )  e.  ~P A  /\  ( f "
( `' f "
w ) )  e.  x )  ->  E. y  e.  ~P  A ( f
" y )  e.  x )
5623, 34, 55syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  w  e.  x
)  ->  E. y  e.  ~P  A ( f
" y )  e.  x )
5756ex 423 . . . . . . . . . . . . . 14  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  ( w  e.  x  ->  E. y  e.  ~P  A ( f
" y )  e.  x ) )
5857exlimdv 1626 . . . . . . . . . . . . 13  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  ( E. w  w  e.  x  ->  E. y  e.  ~P  A
( f " y
)  e.  x ) )
5952, 58mpd 14 . . . . . . . . . . . 12  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  E. y  e.  ~P  A ( f "
y )  e.  x
)
60 rabn0 3487 . . . . . . . . . . . 12  |-  ( { y  e.  ~P A  |  ( f "
y )  e.  x }  =/=  (/)  <->  E. y  e.  ~P  A ( f "
y )  e.  x
)
6159, 60sylibr 203 . . . . . . . . . . 11  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  { y  e. 
~P A  |  ( f " y )  e.  x }  =/=  (/) )
6210elrab 2936 . . . . . . . . . . . . . . 15  |-  ( z  e.  { y  e. 
~P A  |  ( f " y )  e.  x }  <->  ( z  e.  ~P A  /\  (
f " z )  e.  x ) )
63 imaeq2 5024 . . . . . . . . . . . . . . . . 17  |-  ( y  =  w  ->  (
f " y )  =  ( f "
w ) )
6463eleq1d 2362 . . . . . . . . . . . . . . . 16  |-  ( y  =  w  ->  (
( f " y
)  e.  x  <->  ( f " w )  e.  x ) )
6564elrab 2936 . . . . . . . . . . . . . . 15  |-  ( w  e.  { y  e. 
~P A  |  ( f " y )  e.  x }  <->  ( w  e.  ~P A  /\  (
f " w )  e.  x ) )
6662, 65anbi12i 678 . . . . . . . . . . . . . 14  |-  ( ( z  e.  { y  e.  ~P A  | 
( f " y
)  e.  x }  /\  w  e.  { y  e.  ~P A  | 
( f " y
)  e.  x }
)  <->  ( ( z  e.  ~P A  /\  ( f " z
)  e.  x )  /\  ( w  e. 
~P A  /\  (
f " w )  e.  x ) ) )
67 simprrr 741 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  -> [ C.]  Or  x
)
6867adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  ( ( z  e.  ~P A  /\  ( f " z
)  e.  x )  /\  ( w  e. 
~P A  /\  (
f " w )  e.  x ) ) )  -> [ C.]  Or  x
)
69 simprlr 739 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  ( ( z  e.  ~P A  /\  ( f " z
)  e.  x )  /\  ( w  e. 
~P A  /\  (
f " w )  e.  x ) ) )  ->  ( f " z )  e.  x )
70 simprrr 741 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  ( ( z  e.  ~P A  /\  ( f " z
)  e.  x )  /\  ( w  e. 
~P A  /\  (
f " w )  e.  x ) ) )  ->  ( f " w )  e.  x )
71 sorpssi 6299 . . . . . . . . . . . . . . . 16  |-  ( ( [
C.]  Or  x  /\  ( ( f "
z )  e.  x  /\  ( f " w
)  e.  x ) )  ->  ( (
f " z ) 
C_  ( f "
w )  \/  (
f " w ) 
C_  ( f "
z ) ) )
7268, 69, 70, 71syl12anc 1180 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  ( ( z  e.  ~P A  /\  ( f " z
)  e.  x )  /\  ( w  e. 
~P A  /\  (
f " w )  e.  x ) ) )  ->  ( (
f " z ) 
C_  ( f "
w )  \/  (
f " w ) 
C_  ( f "
z ) ) )
73 f1of1 5487 . . . . . . . . . . . . . . . . . 18  |-  ( f : A -1-1-onto-> B  ->  f : A -1-1-> B )
7473ad3antrrr 710 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  ( ( z  e.  ~P A  /\  ( f " z
)  e.  x )  /\  ( w  e. 
~P A  /\  (
f " w )  e.  x ) ) )  ->  f : A -1-1-> B )
75 simprll 738 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  ( ( z  e.  ~P A  /\  ( f " z
)  e.  x )  /\  ( w  e. 
~P A  /\  (
f " w )  e.  x ) ) )  ->  z  e.  ~P A )
76 elpwi 3646 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ~P A  -> 
z  C_  A )
7775, 76syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  ( ( z  e.  ~P A  /\  ( f " z
)  e.  x )  /\  ( w  e. 
~P A  /\  (
f " w )  e.  x ) ) )  ->  z  C_  A )
78 simprrl 740 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  ( ( z  e.  ~P A  /\  ( f " z
)  e.  x )  /\  ( w  e. 
~P A  /\  (
f " w )  e.  x ) ) )  ->  w  e.  ~P A )
79 elpwi 3646 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ~P A  ->  w  C_  A )
8078, 79syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  ( ( z  e.  ~P A  /\  ( f " z
)  e.  x )  /\  ( w  e. 
~P A  /\  (
f " w )  e.  x ) ) )  ->  w  C_  A
)
81 f1imass 5804 . . . . . . . . . . . . . . . . 17  |-  ( ( f : A -1-1-> B  /\  ( z  C_  A  /\  w  C_  A ) )  ->  ( (
f " z ) 
C_  ( f "
w )  <->  z  C_  w ) )
8274, 77, 80, 81syl12anc 1180 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  ( ( z  e.  ~P A  /\  ( f " z
)  e.  x )  /\  ( w  e. 
~P A  /\  (
f " w )  e.  x ) ) )  ->  ( (
f " z ) 
C_  ( f "
w )  <->  z  C_  w ) )
83 f1imass 5804 . . . . . . . . . . . . . . . . 17  |-  ( ( f : A -1-1-> B  /\  ( w  C_  A  /\  z  C_  A ) )  ->  ( (
f " w ) 
C_  ( f "
z )  <->  w  C_  z
) )
8474, 80, 77, 83syl12anc 1180 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  ( ( z  e.  ~P A  /\  ( f " z
)  e.  x )  /\  ( w  e. 
~P A  /\  (
f " w )  e.  x ) ) )  ->  ( (
f " w ) 
C_  ( f "
z )  <->  w  C_  z
) )
8582, 84orbi12d 690 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  ( ( z  e.  ~P A  /\  ( f " z
)  e.  x )  /\  ( w  e. 
~P A  /\  (
f " w )  e.  x ) ) )  ->  ( (
( f " z
)  C_  ( f " w )  \/  ( f " w
)  C_  ( f " z ) )  <-> 
( z  C_  w  \/  w  C_  z ) ) )
8672, 85mpbid 201 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  ( ( z  e.  ~P A  /\  ( f " z
)  e.  x )  /\  ( w  e. 
~P A  /\  (
f " w )  e.  x ) ) )  ->  ( z  C_  w  \/  w  C_  z ) )
8766, 86sylan2b 461 . . . . . . . . . . . . 13  |-  ( ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  (
x  =/=  (/)  /\ [ C.]  Or  x ) ) )  /\  ( z  e. 
{ y  e.  ~P A  |  ( f " y )  e.  x }  /\  w  e.  { y  e.  ~P A  |  ( f " y )  e.  x } ) )  ->  ( z  C_  w  \/  w  C_  z
) )
8887ralrimivva 2648 . . . . . . . . . . . 12  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  A. z  e.  {
y  e.  ~P A  |  ( f "
y )  e.  x } A. w  e.  {
y  e.  ~P A  |  ( f "
y )  e.  x }  ( z  C_  w  \/  w  C_  z
) )
89 sorpss 6298 . . . . . . . . . . . 12  |-  ( [ C.]  Or  { y  e.  ~P A  |  ( f " y )  e.  x }  <->  A. z  e.  { y  e.  ~P A  |  ( f " y )  e.  x } A. w  e.  { y  e.  ~P A  |  ( f " y )  e.  x }  ( z 
C_  w  \/  w  C_  z ) )
9088, 89sylibr 203 . . . . . . . . . . 11  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  -> [ C.]  Or  { y  e.  ~P A  | 
( f " y
)  e.  x }
)
91 fin2i 7937 . . . . . . . . . . 11  |-  ( ( ( A  e. FinII  /\  {
y  e.  ~P A  |  ( f "
y )  e.  x }  C_  ~P A )  /\  ( { y  e.  ~P A  | 
( f " y
)  e.  x }  =/=  (/)  /\ [ C.]  Or  {
y  e.  ~P A  |  ( f "
y )  e.  x } ) )  ->  U. { y  e.  ~P A  |  ( f " y )  e.  x }  e.  {
y  e.  ~P A  |  ( f "
y )  e.  x } )
9247, 49, 61, 90, 91syl22anc 1183 . . . . . . . . . 10  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  U. { y  e. 
~P A  |  ( f " y )  e.  x }  e.  { y  e.  ~P A  |  ( f "
y )  e.  x } )
93 imaeq2 5024 . . . . . . . . . . . . 13  |-  ( z  =  U. { y  e.  ~P A  | 
( f " y
)  e.  x }  ->  ( f " z
)  =  ( f
" U. { y  e.  ~P A  | 
( f " y
)  e.  x }
) )
9493eleq1d 2362 . . . . . . . . . . . 12  |-  ( z  =  U. { y  e.  ~P A  | 
( f " y
)  e.  x }  ->  ( ( f "
z )  e.  x  <->  ( f " U. {
y  e.  ~P A  |  ( f "
y )  e.  x } )  e.  x
) )
9510cbvrabv 2800 . . . . . . . . . . . 12  |-  { y  e.  ~P A  | 
( f " y
)  e.  x }  =  { z  e.  ~P A  |  ( f " z )  e.  x }
9694, 95elrab2 2938 . . . . . . . . . . 11  |-  ( U. { y  e.  ~P A  |  ( f " y )  e.  x }  e.  {
y  e.  ~P A  |  ( f "
y )  e.  x } 
<->  ( U. { y  e.  ~P A  | 
( f " y
)  e.  x }  e.  ~P A  /\  (
f " U. {
y  e.  ~P A  |  ( f "
y )  e.  x } )  e.  x
) )
9796simprbi 450 . . . . . . . . . 10  |-  ( U. { y  e.  ~P A  |  ( f " y )  e.  x }  e.  {
y  e.  ~P A  |  ( f "
y )  e.  x }  ->  ( f " U. { y  e.  ~P A  |  ( f " y )  e.  x } )  e.  x )
9892, 97syl 15 . . . . . . . . 9  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  ( f " U. { y  e.  ~P A  |  ( f " y )  e.  x } )  e.  x )
9946, 98eqeltrrd 2371 . . . . . . . 8  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  ( x  C_  ~P B  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) ) )  ->  U. x  e.  x
)
10099expr 598 . . . . . . 7  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  x  C_  ~P B )  ->  ( ( x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  x ) )
1012, 100sylan2 460 . . . . . 6  |-  ( ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  /\  x  e.  ~P ~P B )  ->  (
( x  =/=  (/)  /\ [ C.]  Or  x )  ->  U. x  e.  x ) )
102101ralrimiva 2639 . . . . 5  |-  ( ( f : A -1-1-onto-> B  /\  A  e. FinII )  ->  A. x  e.  ~P  ~P B ( ( x  =/=  (/)  /\ [ C.]  Or  x )  ->  U. x  e.  x ) )
103102ex 423 . . . 4  |-  ( f : A -1-1-onto-> B  ->  ( A  e. FinII  ->  A. x  e.  ~P  ~P B ( ( x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  x ) ) )
104103exlimiv 1624 . . 3  |-  ( E. f  f : A -1-1-onto-> B  ->  ( A  e. FinII  ->  A. x  e.  ~P  ~P B ( ( x  =/=  (/)  /\ [ C.]  Or  x )  ->  U. x  e.  x ) ) )
1051, 104sylbi 187 . 2  |-  ( A 
~~  B  ->  ( A  e. FinII  ->  A. x  e.  ~P  ~P B ( ( x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  x ) ) )
106 relen 6884 . . . 4  |-  Rel  ~~
107106brrelex2i 4746 . . 3  |-  ( A 
~~  B  ->  B  e.  _V )
108 isfin2 7936 . . 3  |-  ( B  e.  _V  ->  ( B  e. FinII 
<-> 
A. x  e.  ~P  ~P B ( ( x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  x ) ) )
109107, 108syl 15 . 2  |-  ( A 
~~  B  ->  ( B  e. FinII 
<-> 
A. x  e.  ~P  ~P B ( ( x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  x ) ) )
110105, 109sylibrd 225 1  |-  ( A 
~~  B  ->  ( A  e. FinII  ->  B  e. FinII ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560   _Vcvv 2801    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   U.cuni 3843   U_ciun 3921   class class class wbr 4039    Or wor 4329   `'ccnv 4704   dom cdm 4705   "cima 4708   -1-1->wf1 5268   -onto->wfo 5269   -1-1-onto->wf1o 5270   [ C.] crpss 6292    ~~ cen 6876  FinIIcfin2 7921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-rpss 6293  df-en 6880  df-fin2 7928
  Copyright terms: Public domain W3C validator