MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enrer Unicode version

Theorem enrer 8735
Description: The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (New usage is discouraged.)
Assertion
Ref Expression
enrer  |-  ~R  Er  ( P.  X.  P. )

Proof of Theorem enrer
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enr 8726 . 2  |-  ~R  =  { <. x ,  y
>.  |  ( (
x  e.  ( P. 
X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
2 addcompr 8690 . 2  |-  ( x  +P.  y )  =  ( y  +P.  x
)
3 addclpr 8687 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  y
)  e.  P. )
4 addasspr 8691 . 2  |-  ( ( x  +P.  y )  +P.  z )  =  ( x  +P.  (
y  +P.  z )
)
5 addcanpr 8715 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  y )  =  ( x  +P.  z )  ->  y  =  z ) )
61, 2, 3, 4, 5ecopover 6805 1  |-  ~R  Er  ( P.  X.  P. )
Colors of variables: wff set class
Syntax hints:    X. cxp 4724    Er wer 6699   P.cnp 8526    +P. cpp 8528    ~R cer 8533
This theorem is referenced by:  enreceq  8736  addsrpr  8742  mulsrpr  8743  ltsrpr  8744  0nsr  8746  axcnex  8814  wuncn  8837
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-inf2 7387
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-recs 6430  df-rdg 6465  df-1o 6521  df-oadd 6525  df-omul 6526  df-er 6702  df-ni 8541  df-pli 8542  df-mi 8543  df-lti 8544  df-plpq 8577  df-mpq 8578  df-ltpq 8579  df-enq 8580  df-nq 8581  df-erq 8582  df-plq 8583  df-mq 8584  df-1nq 8585  df-rq 8586  df-ltnq 8587  df-np 8650  df-plp 8652  df-ltp 8654  df-enr 8726
  Copyright terms: Public domain W3C validator