MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enrex Unicode version

Theorem enrex 8871
Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.)
Assertion
Ref Expression
enrex  |-  ~R  e.  _V

Proof of Theorem enrex
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 npex 8789 . . . 4  |-  P.  e.  _V
21, 1xpex 4923 . . 3  |-  ( P. 
X.  P. )  e.  _V
32, 2xpex 4923 . 2  |-  ( ( P.  X.  P. )  X.  ( P.  X.  P. ) )  e.  _V
4 df-enr 8860 . . 3  |-  ~R  =  { <. x ,  y
>.  |  ( (
x  e.  ( P. 
X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
5 opabssxp 4883 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }  C_  (
( P.  X.  P. )  X.  ( P.  X.  P. ) )
64, 5eqsstri 3314 . 2  |-  ~R  C_  (
( P.  X.  P. )  X.  ( P.  X.  P. ) )
73, 6ssexi 4282 1  |-  ~R  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   _Vcvv 2892   <.cop 3753   {copab 4199    X. cxp 4809  (class class class)co 6013   P.cnp 8660    +P. cpp 8662    ~R cer 8667
This theorem is referenced by:  addsrpr  8876  mulsrpr  8877  ltsrpr  8878  0r  8881  1sr  8882  m1r  8883  addclsr  8884  mulclsr  8885  recexsrlem  8904
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-tr 4237  df-eprel 4428  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-ni 8675  df-nq 8715  df-np 8784  df-enr 8860
  Copyright terms: Public domain W3C validator