MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enssdom Unicode version

Theorem enssdom 6902
Description: Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
enssdom  |-  ~~  C_  ~<_

Proof of Theorem enssdom
Dummy variables  x  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relen 6884 . 2  |-  Rel  ~~
2 f1of1 5487 . . . . 5  |-  ( f : x -1-1-onto-> y  ->  f : x -1-1-> y )
32eximi 1566 . . . 4  |-  ( E. f  f : x -1-1-onto-> y  ->  E. f  f : x -1-1-> y )
4 opabid 4287 . . . 4  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }  <->  E. f  f :
x
-1-1-onto-> y )
5 opabid 4287 . . . 4  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  E. f 
f : x -1-1-> y }  <->  E. f  f : x -1-1-> y )
63, 4, 53imtr4i 257 . . 3  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }  ->  <. x ,  y
>.  e.  { <. x ,  y >.  |  E. f  f : x
-1-1-> y } )
7 df-en 6880 . . . 4  |-  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
87eleq2i 2360 . . 3  |-  ( <.
x ,  y >.  e.  ~~  <->  <. x ,  y
>.  e.  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y } )
9 df-dom 6881 . . . 4  |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x -1-1-> y }
109eleq2i 2360 . . 3  |-  ( <.
x ,  y >.  e. 
~<_ 
<-> 
<. x ,  y >.  e.  { <. x ,  y
>.  |  E. f 
f : x -1-1-> y } )
116, 8, 103imtr4i 257 . 2  |-  ( <.
x ,  y >.  e.  ~~  ->  <. x ,  y >.  e.  ~<_  )
121, 11relssi 4794 1  |-  ~~  C_  ~<_
Colors of variables: wff set class
Syntax hints:   E.wex 1531    e. wcel 1696    C_ wss 3165   <.cop 3656   {copab 4092   -1-1->wf1 5268   -1-1-onto->wf1o 5270    ~~ cen 6876    ~<_ cdom 6877
This theorem is referenced by:  dfdom2  6903  endom  6904
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-opab 4094  df-xp 4711  df-rel 4712  df-f1o 5278  df-en 6880  df-dom 6881
  Copyright terms: Public domain W3C validator