MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epfrs Structured version   Unicode version

Theorem epfrs 7669
Description: The strong form of the Axiom of Regularity (no sethood requirement on  A), with the axiom itself present as an antecedent. See also zfregs 7670. (Contributed by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
epfrs  |-  ( (  _E  Fr  A  /\  A  =/=  (/) )  ->  E. x  e.  A  ( x  i^i  A )  =  (/) )
Distinct variable group:    x, A

Proof of Theorem epfrs
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3639 . . 3  |-  ( A  =/=  (/)  <->  E. z  z  e.  A )
2 snex 4407 . . . . . 6  |-  { z }  e.  _V
32tz9.1 7667 . . . . 5  |-  E. y
( { z } 
C_  y  /\  Tr  y  /\  A. w ( ( { z } 
C_  w  /\  Tr  w )  ->  y  C_  w ) )
4 snssi 3944 . . . . . . . . . . . . 13  |-  ( z  e.  A  ->  { z }  C_  A )
54anim2i 554 . . . . . . . . . . . 12  |-  ( ( { z }  C_  y  /\  z  e.  A
)  ->  ( {
z }  C_  y  /\  { z }  C_  A ) )
6 ssin 3565 . . . . . . . . . . . . 13  |-  ( ( { z }  C_  y  /\  { z } 
C_  A )  <->  { z }  C_  ( y  i^i 
A ) )
7 vex 2961 . . . . . . . . . . . . . 14  |-  z  e. 
_V
87snss 3928 . . . . . . . . . . . . 13  |-  ( z  e.  ( y  i^i 
A )  <->  { z }  C_  ( y  i^i 
A ) )
96, 8bitr4i 245 . . . . . . . . . . . 12  |-  ( ( { z }  C_  y  /\  { z } 
C_  A )  <->  z  e.  ( y  i^i  A
) )
105, 9sylib 190 . . . . . . . . . . 11  |-  ( ( { z }  C_  y  /\  z  e.  A
)  ->  z  e.  ( y  i^i  A
) )
11 ne0i 3636 . . . . . . . . . . 11  |-  ( z  e.  ( y  i^i 
A )  ->  (
y  i^i  A )  =/=  (/) )
1210, 11syl 16 . . . . . . . . . 10  |-  ( ( { z }  C_  y  /\  z  e.  A
)  ->  ( y  i^i  A )  =/=  (/) )
13 inss2 3564 . . . . . . . . . . . . 13  |-  ( y  i^i  A )  C_  A
14 vex 2961 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
1514inex1 4346 . . . . . . . . . . . . . 14  |-  ( y  i^i  A )  e. 
_V
1615epfrc 4570 . . . . . . . . . . . . 13  |-  ( (  _E  Fr  A  /\  ( y  i^i  A
)  C_  A  /\  ( y  i^i  A
)  =/=  (/) )  ->  E. x  e.  (
y  i^i  A )
( ( y  i^i 
A )  i^i  x
)  =  (/) )
1713, 16mp3an2 1268 . . . . . . . . . . . 12  |-  ( (  _E  Fr  A  /\  ( y  i^i  A
)  =/=  (/) )  ->  E. x  e.  (
y  i^i  A )
( ( y  i^i 
A )  i^i  x
)  =  (/) )
18 elin 3532 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( y  i^i 
A )  <->  ( x  e.  y  /\  x  e.  A ) )
1918anbi1i 678 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( y  i^i  A )  /\  ( ( y  i^i 
A )  i^i  x
)  =  (/) )  <->  ( (
x  e.  y  /\  x  e.  A )  /\  ( ( y  i^i 
A )  i^i  x
)  =  (/) ) )
20 anass 632 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  y  /\  x  e.  A
)  /\  ( (
y  i^i  A )  i^i  x )  =  (/) ) 
<->  ( x  e.  y  /\  ( x  e.  A  /\  ( ( y  i^i  A )  i^i  x )  =  (/) ) ) )
2119, 20bitri 242 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( y  i^i  A )  /\  ( ( y  i^i 
A )  i^i  x
)  =  (/) )  <->  ( x  e.  y  /\  (
x  e.  A  /\  ( ( y  i^i 
A )  i^i  x
)  =  (/) ) ) )
22 n0 3639 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  i^i  A )  =/=  (/)  <->  E. w  w  e.  ( x  i^i  A
) )
23 inss1 3563 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  i^i  A )  C_  x
2423sseli 3346 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  ( x  i^i 
A )  ->  w  e.  x )
2524ancri 537 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  ( x  i^i 
A )  ->  (
w  e.  x  /\  w  e.  ( x  i^i  A ) ) )
26 trel 4311 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( Tr  y  ->  ( (
w  e.  x  /\  x  e.  y )  ->  w  e.  y ) )
27 inass 3553 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( y  i^i  A )  i^i  x )  =  ( y  i^i  ( A  i^i  x ) )
28 incom 3535 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( A  i^i  x )  =  ( x  i^i  A
)
2928ineq2i 3541 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( y  i^i  ( A  i^i  x ) )  =  ( y  i^i  (
x  i^i  A )
)
3027, 29eqtri 2458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( y  i^i  A )  i^i  x )  =  ( y  i^i  (
x  i^i  A )
)
3130eleq2i 2502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( w  e.  ( ( y  i^i  A )  i^i  x )  <->  w  e.  ( y  i^i  (
x  i^i  A )
) )
32 elin 3532 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( w  e.  ( y  i^i  ( x  i^i  A
) )  <->  ( w  e.  y  /\  w  e.  ( x  i^i  A
) ) )
3331, 32bitr2i 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( w  e.  y  /\  w  e.  ( x  i^i  A ) )  <->  w  e.  ( ( y  i^i 
A )  i^i  x
) )
34 ne0i 3636 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( w  e.  ( ( y  i^i  A )  i^i  x )  ->  (
( y  i^i  A
)  i^i  x )  =/=  (/) )
3533, 34sylbi 189 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( w  e.  y  /\  w  e.  ( x  i^i  A ) )  -> 
( ( y  i^i 
A )  i^i  x
)  =/=  (/) )
3635ex 425 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( w  e.  y  ->  (
w  e.  ( x  i^i  A )  -> 
( ( y  i^i 
A )  i^i  x
)  =/=  (/) ) )
3726, 36syl6 32 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( Tr  y  ->  ( (
w  e.  x  /\  x  e.  y )  ->  ( w  e.  ( x  i^i  A )  ->  ( ( y  i^i  A )  i^i  x )  =/=  (/) ) ) )
3837exp3a 427 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( Tr  y  ->  ( w  e.  x  ->  ( x  e.  y  ->  (
w  e.  ( x  i^i  A )  -> 
( ( y  i^i 
A )  i^i  x
)  =/=  (/) ) ) ) )
3938com34 80 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Tr  y  ->  ( w  e.  x  ->  ( w  e.  ( x  i^i 
A )  ->  (
x  e.  y  -> 
( ( y  i^i 
A )  i^i  x
)  =/=  (/) ) ) ) )
4039imp3a 422 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Tr  y  ->  ( (
w  e.  x  /\  w  e.  ( x  i^i  A ) )  -> 
( x  e.  y  ->  ( ( y  i^i  A )  i^i  x )  =/=  (/) ) ) )
4125, 40syl5 31 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Tr  y  ->  ( w  e.  ( x  i^i  A
)  ->  ( x  e.  y  ->  ( ( y  i^i  A )  i^i  x )  =/=  (/) ) ) )
4241exlimdv 1647 . . . . . . . . . . . . . . . . . . . 20  |-  ( Tr  y  ->  ( E. w  w  e.  (
x  i^i  A )  ->  ( x  e.  y  ->  ( ( y  i^i  A )  i^i  x )  =/=  (/) ) ) )
4322, 42syl5bi 210 . . . . . . . . . . . . . . . . . . 19  |-  ( Tr  y  ->  ( (
x  i^i  A )  =/=  (/)  ->  ( x  e.  y  ->  ( ( y  i^i  A )  i^i  x )  =/=  (/) ) ) )
4443com23 75 . . . . . . . . . . . . . . . . . 18  |-  ( Tr  y  ->  ( x  e.  y  ->  ( ( x  i^i  A )  =/=  (/)  ->  ( (
y  i^i  A )  i^i  x )  =/=  (/) ) ) )
4544imp 420 . . . . . . . . . . . . . . . . 17  |-  ( ( Tr  y  /\  x  e.  y )  ->  (
( x  i^i  A
)  =/=  (/)  ->  (
( y  i^i  A
)  i^i  x )  =/=  (/) ) )
4645necon4d 2669 . . . . . . . . . . . . . . . 16  |-  ( ( Tr  y  /\  x  e.  y )  ->  (
( ( y  i^i 
A )  i^i  x
)  =  (/)  ->  (
x  i^i  A )  =  (/) ) )
4746anim2d 550 . . . . . . . . . . . . . . 15  |-  ( ( Tr  y  /\  x  e.  y )  ->  (
( x  e.  A  /\  ( ( y  i^i 
A )  i^i  x
)  =  (/) )  -> 
( x  e.  A  /\  ( x  i^i  A
)  =  (/) ) ) )
4847expimpd 588 . . . . . . . . . . . . . 14  |-  ( Tr  y  ->  ( (
x  e.  y  /\  ( x  e.  A  /\  ( ( y  i^i 
A )  i^i  x
)  =  (/) ) )  ->  ( x  e.  A  /\  ( x  i^i  A )  =  (/) ) ) )
4921, 48syl5bi 210 . . . . . . . . . . . . 13  |-  ( Tr  y  ->  ( (
x  e.  ( y  i^i  A )  /\  ( ( y  i^i 
A )  i^i  x
)  =  (/) )  -> 
( x  e.  A  /\  ( x  i^i  A
)  =  (/) ) ) )
5049reximdv2 2817 . . . . . . . . . . . 12  |-  ( Tr  y  ->  ( E. x  e.  ( y  i^i  A ) ( ( y  i^i  A )  i^i  x )  =  (/)  ->  E. x  e.  A  ( x  i^i  A )  =  (/) ) )
5117, 50syl5 31 . . . . . . . . . . 11  |-  ( Tr  y  ->  ( (  _E  Fr  A  /\  (
y  i^i  A )  =/=  (/) )  ->  E. x  e.  A  ( x  i^i  A )  =  (/) ) )
5251exp3acom23 1382 . . . . . . . . . 10  |-  ( Tr  y  ->  ( (
y  i^i  A )  =/=  (/)  ->  (  _E  Fr  A  ->  E. x  e.  A  ( x  i^i  A )  =  (/) ) ) )
5312, 52syl5 31 . . . . . . . . 9  |-  ( Tr  y  ->  ( ( { z }  C_  y  /\  z  e.  A
)  ->  (  _E  Fr  A  ->  E. x  e.  A  ( x  i^i  A )  =  (/) ) ) )
5453exp3a 427 . . . . . . . 8  |-  ( Tr  y  ->  ( {
z }  C_  y  ->  ( z  e.  A  ->  (  _E  Fr  A  ->  E. x  e.  A  ( x  i^i  A )  =  (/) ) ) ) )
5554impcom 421 . . . . . . 7  |-  ( ( { z }  C_  y  /\  Tr  y )  ->  ( z  e.  A  ->  (  _E  Fr  A  ->  E. x  e.  A  ( x  i^i  A )  =  (/) ) ) )
56553adant3 978 . . . . . 6  |-  ( ( { z }  C_  y  /\  Tr  y  /\  A. w ( ( { z }  C_  w  /\  Tr  w )  -> 
y  C_  w )
)  ->  ( z  e.  A  ->  (  _E  Fr  A  ->  E. x  e.  A  ( x  i^i  A )  =  (/) ) ) )
5756exlimiv 1645 . . . . 5  |-  ( E. y ( { z }  C_  y  /\  Tr  y  /\  A. w
( ( { z }  C_  w  /\  Tr  w )  ->  y  C_  w ) )  -> 
( z  e.  A  ->  (  _E  Fr  A  ->  E. x  e.  A  ( x  i^i  A )  =  (/) ) ) )
583, 57ax-mp 8 . . . 4  |-  ( z  e.  A  ->  (  _E  Fr  A  ->  E. x  e.  A  ( x  i^i  A )  =  (/) ) )
5958exlimiv 1645 . . 3  |-  ( E. z  z  e.  A  ->  (  _E  Fr  A  ->  E. x  e.  A  ( x  i^i  A )  =  (/) ) )
601, 59sylbi 189 . 2  |-  ( A  =/=  (/)  ->  (  _E  Fr  A  ->  E. x  e.  A  ( x  i^i  A )  =  (/) ) )
6160impcom 421 1  |-  ( (  _E  Fr  A  /\  A  =/=  (/) )  ->  E. x  e.  A  ( x  i^i  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937   A.wal 1550   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708    i^i cin 3321    C_ wss 3322   (/)c0 3630   {csn 3816   Tr wtr 4304    _E cep 4494    Fr wfr 4540
This theorem is referenced by:  zfregs  7670
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-recs 6635  df-rdg 6670
  Copyright terms: Public domain W3C validator