MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epttop Unicode version

Theorem epttop 17036
Description: The excluded point topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
epttop  |-  ( ( A  e.  V  /\  P  e.  A )  ->  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  e.  (TopOn `  A ) )
Distinct variable groups:    x, A    x, P
Allowed substitution hint:    V( x)

Proof of Theorem epttop
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab 3389 . . . . 5  |-  ( y 
C_  { x  e. 
~P A  |  ( P  e.  x  ->  x  =  A ) } 
<->  ( y  C_  ~P A  /\  A. x  e.  y  ( P  e.  x  ->  x  =  A ) ) )
2 simprl 733 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( y  C_ 
~P A  /\  A. x  e.  y  ( P  e.  x  ->  x  =  A ) ) )  ->  y  C_  ~P A )
3 sspwuni 4144 . . . . . . . . 9  |-  ( y 
C_  ~P A  <->  U. y  C_  A )
42, 3sylib 189 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( y  C_ 
~P A  /\  A. x  e.  y  ( P  e.  x  ->  x  =  A ) ) )  ->  U. y  C_  A )
5 vex 2927 . . . . . . . . . 10  |-  y  e. 
_V
65uniex 4672 . . . . . . . . 9  |-  U. y  e.  _V
76elpw 3773 . . . . . . . 8  |-  ( U. y  e.  ~P A  <->  U. y  C_  A )
84, 7sylibr 204 . . . . . . 7  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( y  C_ 
~P A  /\  A. x  e.  y  ( P  e.  x  ->  x  =  A ) ) )  ->  U. y  e.  ~P A )
9 eluni2 3987 . . . . . . . . . 10  |-  ( P  e.  U. y  <->  E. x  e.  y  P  e.  x )
10 r19.29 2814 . . . . . . . . . . . . 13  |-  ( ( A. x  e.  y  ( P  e.  x  ->  x  =  A )  /\  E. x  e.  y  P  e.  x
)  ->  E. x  e.  y  ( ( P  e.  x  ->  x  =  A )  /\  P  e.  x )
)
11 simpr 448 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  y  /\  ( P  e.  x  ->  x  =  A ) )  ->  ( P  e.  x  ->  x  =  A ) )
1211impr 603 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  y  /\  ( ( P  e.  x  ->  x  =  A )  /\  P  e.  x ) )  ->  x  =  A )
13 elssuni 4011 . . . . . . . . . . . . . . . 16  |-  ( x  e.  y  ->  x  C_ 
U. y )
1413adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  y  /\  ( ( P  e.  x  ->  x  =  A )  /\  P  e.  x ) )  ->  x  C_  U. y )
1512, 14eqsstr3d 3351 . . . . . . . . . . . . . 14  |-  ( ( x  e.  y  /\  ( ( P  e.  x  ->  x  =  A )  /\  P  e.  x ) )  ->  A  C_  U. y )
1615rexlimiva 2793 . . . . . . . . . . . . 13  |-  ( E. x  e.  y  ( ( P  e.  x  ->  x  =  A )  /\  P  e.  x
)  ->  A  C_  U. y
)
1710, 16syl 16 . . . . . . . . . . . 12  |-  ( ( A. x  e.  y  ( P  e.  x  ->  x  =  A )  /\  E. x  e.  y  P  e.  x
)  ->  A  C_  U. y
)
1817ex 424 . . . . . . . . . . 11  |-  ( A. x  e.  y  ( P  e.  x  ->  x  =  A )  -> 
( E. x  e.  y  P  e.  x  ->  A  C_  U. y
) )
1918ad2antll 710 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( y  C_ 
~P A  /\  A. x  e.  y  ( P  e.  x  ->  x  =  A ) ) )  ->  ( E. x  e.  y  P  e.  x  ->  A  C_  U. y ) )
209, 19syl5bi 209 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( y  C_ 
~P A  /\  A. x  e.  y  ( P  e.  x  ->  x  =  A ) ) )  ->  ( P  e.  U. y  ->  A  C_ 
U. y ) )
2120, 4jctild 528 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( y  C_ 
~P A  /\  A. x  e.  y  ( P  e.  x  ->  x  =  A ) ) )  ->  ( P  e.  U. y  ->  ( U. y  C_  A  /\  A  C_  U. y ) ) )
22 eqss 3331 . . . . . . . 8  |-  ( U. y  =  A  <->  ( U. y  C_  A  /\  A  C_ 
U. y ) )
2321, 22syl6ibr 219 . . . . . . 7  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( y  C_ 
~P A  /\  A. x  e.  y  ( P  e.  x  ->  x  =  A ) ) )  ->  ( P  e.  U. y  ->  U. y  =  A ) )
24 eleq2 2473 . . . . . . . . 9  |-  ( x  =  U. y  -> 
( P  e.  x  <->  P  e.  U. y ) )
25 eqeq1 2418 . . . . . . . . 9  |-  ( x  =  U. y  -> 
( x  =  A  <->  U. y  =  A
) )
2624, 25imbi12d 312 . . . . . . . 8  |-  ( x  =  U. y  -> 
( ( P  e.  x  ->  x  =  A )  <->  ( P  e.  U. y  ->  U. y  =  A ) ) )
2726elrab 3060 . . . . . . 7  |-  ( U. y  e.  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } 
<->  ( U. y  e. 
~P A  /\  ( P  e.  U. y  ->  U. y  =  A ) ) )
288, 23, 27sylanbrc 646 . . . . . 6  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( y  C_ 
~P A  /\  A. x  e.  y  ( P  e.  x  ->  x  =  A ) ) )  ->  U. y  e.  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } )
2928ex 424 . . . . 5  |-  ( ( A  e.  V  /\  P  e.  A )  ->  ( ( y  C_  ~P A  /\  A. x  e.  y  ( P  e.  x  ->  x  =  A ) )  ->  U. y  e.  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } ) )
301, 29syl5bi 209 . . . 4  |-  ( ( A  e.  V  /\  P  e.  A )  ->  ( y  C_  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  ->  U. y  e.  {
x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } ) )
3130alrimiv 1638 . . 3  |-  ( ( A  e.  V  /\  P  e.  A )  ->  A. y ( y 
C_  { x  e. 
~P A  |  ( P  e.  x  ->  x  =  A ) }  ->  U. y  e.  {
x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } ) )
32 inss1 3529 . . . . . . . . 9  |-  ( y  i^i  z )  C_  y
33 simprll 739 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( (
y  e.  ~P A  /\  ( P  e.  y  ->  y  =  A ) )  /\  (
z  e.  ~P A  /\  ( P  e.  z  ->  z  =  A ) ) ) )  ->  y  e.  ~P A )
3433elpwid 3776 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( (
y  e.  ~P A  /\  ( P  e.  y  ->  y  =  A ) )  /\  (
z  e.  ~P A  /\  ( P  e.  z  ->  z  =  A ) ) ) )  ->  y  C_  A
)
3532, 34syl5ss 3327 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( (
y  e.  ~P A  /\  ( P  e.  y  ->  y  =  A ) )  /\  (
z  e.  ~P A  /\  ( P  e.  z  ->  z  =  A ) ) ) )  ->  ( y  i^i  z )  C_  A
)
365inex1 4312 . . . . . . . . 9  |-  ( y  i^i  z )  e. 
_V
3736elpw 3773 . . . . . . . 8  |-  ( ( y  i^i  z )  e.  ~P A  <->  ( y  i^i  z )  C_  A
)
3835, 37sylibr 204 . . . . . . 7  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( (
y  e.  ~P A  /\  ( P  e.  y  ->  y  =  A ) )  /\  (
z  e.  ~P A  /\  ( P  e.  z  ->  z  =  A ) ) ) )  ->  ( y  i^i  z )  e.  ~P A )
39 elin 3498 . . . . . . . 8  |-  ( P  e.  ( y  i^i  z )  <->  ( P  e.  y  /\  P  e.  z ) )
40 simprlr 740 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( (
y  e.  ~P A  /\  ( P  e.  y  ->  y  =  A ) )  /\  (
z  e.  ~P A  /\  ( P  e.  z  ->  z  =  A ) ) ) )  ->  ( P  e.  y  ->  y  =  A ) )
41 simprrr 742 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( (
y  e.  ~P A  /\  ( P  e.  y  ->  y  =  A ) )  /\  (
z  e.  ~P A  /\  ( P  e.  z  ->  z  =  A ) ) ) )  ->  ( P  e.  z  ->  z  =  A ) )
4240, 41anim12d 547 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( (
y  e.  ~P A  /\  ( P  e.  y  ->  y  =  A ) )  /\  (
z  e.  ~P A  /\  ( P  e.  z  ->  z  =  A ) ) ) )  ->  ( ( P  e.  y  /\  P  e.  z )  ->  (
y  =  A  /\  z  =  A )
) )
43 ineq12 3505 . . . . . . . . . 10  |-  ( ( y  =  A  /\  z  =  A )  ->  ( y  i^i  z
)  =  ( A  i^i  A ) )
44 inidm 3518 . . . . . . . . . 10  |-  ( A  i^i  A )  =  A
4543, 44syl6eq 2460 . . . . . . . . 9  |-  ( ( y  =  A  /\  z  =  A )  ->  ( y  i^i  z
)  =  A )
4642, 45syl6 31 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( (
y  e.  ~P A  /\  ( P  e.  y  ->  y  =  A ) )  /\  (
z  e.  ~P A  /\  ( P  e.  z  ->  z  =  A ) ) ) )  ->  ( ( P  e.  y  /\  P  e.  z )  ->  (
y  i^i  z )  =  A ) )
4739, 46syl5bi 209 . . . . . . 7  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( (
y  e.  ~P A  /\  ( P  e.  y  ->  y  =  A ) )  /\  (
z  e.  ~P A  /\  ( P  e.  z  ->  z  =  A ) ) ) )  ->  ( P  e.  ( y  i^i  z
)  ->  ( y  i^i  z )  =  A ) )
4838, 47jca 519 . . . . . 6  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( (
y  e.  ~P A  /\  ( P  e.  y  ->  y  =  A ) )  /\  (
z  e.  ~P A  /\  ( P  e.  z  ->  z  =  A ) ) ) )  ->  ( ( y  i^i  z )  e. 
~P A  /\  ( P  e.  ( y  i^i  z )  ->  (
y  i^i  z )  =  A ) ) )
4948ex 424 . . . . 5  |-  ( ( A  e.  V  /\  P  e.  A )  ->  ( ( ( y  e.  ~P A  /\  ( P  e.  y  ->  y  =  A ) )  /\  ( z  e.  ~P A  /\  ( P  e.  z  ->  z  =  A ) ) )  ->  (
( y  i^i  z
)  e.  ~P A  /\  ( P  e.  ( y  i^i  z )  ->  ( y  i^i  z )  =  A ) ) ) )
50 eleq2 2473 . . . . . . . 8  |-  ( x  =  y  ->  ( P  e.  x  <->  P  e.  y ) )
51 eqeq1 2418 . . . . . . . 8  |-  ( x  =  y  ->  (
x  =  A  <->  y  =  A ) )
5250, 51imbi12d 312 . . . . . . 7  |-  ( x  =  y  ->  (
( P  e.  x  ->  x  =  A )  <-> 
( P  e.  y  ->  y  =  A ) ) )
5352elrab 3060 . . . . . 6  |-  ( y  e.  { x  e. 
~P A  |  ( P  e.  x  ->  x  =  A ) } 
<->  ( y  e.  ~P A  /\  ( P  e.  y  ->  y  =  A ) ) )
54 eleq2 2473 . . . . . . . 8  |-  ( x  =  z  ->  ( P  e.  x  <->  P  e.  z ) )
55 eqeq1 2418 . . . . . . . 8  |-  ( x  =  z  ->  (
x  =  A  <->  z  =  A ) )
5654, 55imbi12d 312 . . . . . . 7  |-  ( x  =  z  ->  (
( P  e.  x  ->  x  =  A )  <-> 
( P  e.  z  ->  z  =  A ) ) )
5756elrab 3060 . . . . . 6  |-  ( z  e.  { x  e. 
~P A  |  ( P  e.  x  ->  x  =  A ) } 
<->  ( z  e.  ~P A  /\  ( P  e.  z  ->  z  =  A ) ) )
5853, 57anbi12i 679 . . . . 5  |-  ( ( y  e.  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  /\  z  e.  {
x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } )  <-> 
( ( y  e. 
~P A  /\  ( P  e.  y  ->  y  =  A ) )  /\  ( z  e. 
~P A  /\  ( P  e.  z  ->  z  =  A ) ) ) )
59 eleq2 2473 . . . . . . 7  |-  ( x  =  ( y  i^i  z )  ->  ( P  e.  x  <->  P  e.  ( y  i^i  z
) ) )
60 eqeq1 2418 . . . . . . 7  |-  ( x  =  ( y  i^i  z )  ->  (
x  =  A  <->  ( y  i^i  z )  =  A ) )
6159, 60imbi12d 312 . . . . . 6  |-  ( x  =  ( y  i^i  z )  ->  (
( P  e.  x  ->  x  =  A )  <-> 
( P  e.  ( y  i^i  z )  ->  ( y  i^i  z )  =  A ) ) )
6261elrab 3060 . . . . 5  |-  ( ( y  i^i  z )  e.  { x  e. 
~P A  |  ( P  e.  x  ->  x  =  A ) } 
<->  ( ( y  i^i  z )  e.  ~P A  /\  ( P  e.  ( y  i^i  z
)  ->  ( y  i^i  z )  =  A ) ) )
6349, 58, 623imtr4g 262 . . . 4  |-  ( ( A  e.  V  /\  P  e.  A )  ->  ( ( y  e. 
{ x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  /\  z  e.  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } )  ->  (
y  i^i  z )  e.  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } ) )
6463ralrimivv 2765 . . 3  |-  ( ( A  e.  V  /\  P  e.  A )  ->  A. y  e.  {
x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } A. z  e.  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  ( y  i^i  z )  e.  {
x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } )
65 pwexg 4351 . . . . . 6  |-  ( A  e.  V  ->  ~P A  e.  _V )
6665adantr 452 . . . . 5  |-  ( ( A  e.  V  /\  P  e.  A )  ->  ~P A  e.  _V )
67 rabexg 4321 . . . . 5  |-  ( ~P A  e.  _V  ->  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  e.  _V )
6866, 67syl 16 . . . 4  |-  ( ( A  e.  V  /\  P  e.  A )  ->  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  e.  _V )
69 istopg 16931 . . . 4  |-  ( { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  e.  _V  ->  ( { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  e.  Top  <->  ( A. y ( y  C_  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  ->  U. y  e.  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } A. z  e.  {
x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  (
y  i^i  z )  e.  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } ) ) )
7068, 69syl 16 . . 3  |-  ( ( A  e.  V  /\  P  e.  A )  ->  ( { x  e. 
~P A  |  ( P  e.  x  ->  x  =  A ) }  e.  Top  <->  ( A. y ( y  C_  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  ->  U. y  e.  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } A. z  e.  {
x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  (
y  i^i  z )  e.  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } ) ) )
7131, 64, 70mpbir2and 889 . 2  |-  ( ( A  e.  V  /\  P  e.  A )  ->  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  e.  Top )
72 pwidg 3779 . . . . . 6  |-  ( A  e.  V  ->  A  e.  ~P A )
7372adantr 452 . . . . 5  |-  ( ( A  e.  V  /\  P  e.  A )  ->  A  e.  ~P A
)
74 eqidd 2413 . . . . . 6  |-  ( ( A  e.  V  /\  P  e.  A )  ->  A  =  A )
7574a1d 23 . . . . 5  |-  ( ( A  e.  V  /\  P  e.  A )  ->  ( P  e.  A  ->  A  =  A ) )
76 eleq2 2473 . . . . . . 7  |-  ( x  =  A  ->  ( P  e.  x  <->  P  e.  A ) )
77 eqeq1 2418 . . . . . . 7  |-  ( x  =  A  ->  (
x  =  A  <->  A  =  A ) )
7876, 77imbi12d 312 . . . . . 6  |-  ( x  =  A  ->  (
( P  e.  x  ->  x  =  A )  <-> 
( P  e.  A  ->  A  =  A ) ) )
7978elrab 3060 . . . . 5  |-  ( A  e.  { x  e. 
~P A  |  ( P  e.  x  ->  x  =  A ) } 
<->  ( A  e.  ~P A  /\  ( P  e.  A  ->  A  =  A ) ) )
8073, 75, 79sylanbrc 646 . . . 4  |-  ( ( A  e.  V  /\  P  e.  A )  ->  A  e.  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } )
81 elssuni 4011 . . . 4  |-  ( A  e.  { x  e. 
~P A  |  ( P  e.  x  ->  x  =  A ) }  ->  A  C_  U. {
x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } )
8280, 81syl 16 . . 3  |-  ( ( A  e.  V  /\  P  e.  A )  ->  A  C_  U. { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } )
83 ssrab2 3396 . . . . 5  |-  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  C_  ~P A
84 sspwuni 4144 . . . . 5  |-  ( { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  C_  ~P A  <->  U. { x  e. 
~P A  |  ( P  e.  x  ->  x  =  A ) }  C_  A )
8583, 84mpbi 200 . . . 4  |-  U. {
x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  C_  A
8685a1i 11 . . 3  |-  ( ( A  e.  V  /\  P  e.  A )  ->  U. { x  e. 
~P A  |  ( P  e.  x  ->  x  =  A ) }  C_  A )
8782, 86eqssd 3333 . 2  |-  ( ( A  e.  V  /\  P  e.  A )  ->  A  =  U. {
x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } )
88 istopon 16953 . 2  |-  ( { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  e.  (TopOn `  A )  <->  ( {
x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  e.  Top  /\  A  =  U. { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) } ) )
8971, 87, 88sylanbrc 646 1  |-  ( ( A  e.  V  /\  P  e.  A )  ->  { x  e.  ~P A  |  ( P  e.  x  ->  x  =  A ) }  e.  (TopOn `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546    = wceq 1649    e. wcel 1721   A.wral 2674   E.wrex 2675   {crab 2678   _Vcvv 2924    i^i cin 3287    C_ wss 3288   ~Pcpw 3767   U.cuni 3983   ` cfv 5421   Topctop 16921  TopOnctopon 16922
This theorem is referenced by:  dfac14lem  17610  dfac14  17611
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5385  df-fun 5423  df-fv 5429  df-top 16926  df-topon 16929
  Copyright terms: Public domain W3C validator