MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrrdv Structured version   Unicode version

Theorem eqbrrdv 4965
Description: Deduction from extensionality principle for relations. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
eqbrrdv.1  |-  ( ph  ->  Rel  A )
eqbrrdv.2  |-  ( ph  ->  Rel  B )
eqbrrdv.3  |-  ( ph  ->  ( x A y  <-> 
x B y ) )
Assertion
Ref Expression
eqbrrdv  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, y, A    x, B, y    ph, x, y

Proof of Theorem eqbrrdv
StepHypRef Expression
1 eqbrrdv.3 . . . 4  |-  ( ph  ->  ( x A y  <-> 
x B y ) )
2 df-br 4205 . . . 4  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
3 df-br 4205 . . . 4  |-  ( x B y  <->  <. x ,  y >.  e.  B
)
41, 2, 33bitr3g 279 . . 3  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) )
54alrimivv 1642 . 2  |-  ( ph  ->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) )
6 eqbrrdv.1 . . 3  |-  ( ph  ->  Rel  A )
7 eqbrrdv.2 . . 3  |-  ( ph  ->  Rel  B )
8 eqrel 4957 . . 3  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) ) )
96, 7, 8syl2anc 643 . 2  |-  ( ph  ->  ( A  =  B  <->  A. x A. y (
<. x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B ) ) )
105, 9mpbird 224 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   A.wal 1549    = wceq 1652    e. wcel 1725   <.cop 3809   class class class wbr 4204   Rel wrel 4875
This theorem is referenced by:  eqbrrdva  5034  oppcsect2  13992
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877
  Copyright terms: Public domain W3C validator