MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrriv Unicode version

Theorem eqbrriv 4782
Description: Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006.)
Hypotheses
Ref Expression
eqbrriv.1  |-  Rel  A
eqbrriv.2  |-  Rel  B
eqbrriv.3  |-  ( x A y  <->  x B
y )
Assertion
Ref Expression
eqbrriv  |-  A  =  B
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem eqbrriv
StepHypRef Expression
1 eqbrriv.1 . 2  |-  Rel  A
2 eqbrriv.2 . 2  |-  Rel  B
3 eqbrriv.3 . . 3  |-  ( x A y  <->  x B
y )
4 df-br 4024 . . 3  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
5 df-br 4024 . . 3  |-  ( x B y  <->  <. x ,  y >.  e.  B
)
63, 4, 53bitr3i 266 . 2  |-  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )
71, 2, 6eqrelriiv 4781 1  |-  A  =  B
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1623    e. wcel 1684   <.cop 3643   class class class wbr 4023   Rel wrel 4694
This theorem is referenced by:  resco  5177  tpostpos  6254  sbthcl  6983  dfle2  10481  dflt2  10482  idsset  24430  dfbigcup2  24439  imageval  24469
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696
  Copyright terms: Public domain W3C validator