Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqelsuc Structured version   Unicode version

Theorem eqelsuc 4662
 Description: A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.)
Hypothesis
Ref Expression
eqelsuc.1
Assertion
Ref Expression
eqelsuc

Proof of Theorem eqelsuc
StepHypRef Expression
1 eqelsuc.1 . . 3
21sucid 4660 . 2
3 suceq 4646 . 2
42, 3syl5eleq 2522 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652   wcel 1725  cvv 2956   csuc 4583 This theorem is referenced by:  pssnn  7327 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-un 3325  df-sn 3820  df-suc 4587
 Copyright terms: Public domain W3C validator