MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgid Unicode version

Theorem eqgid 14669
Description: The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
eqgid.3  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
eqgid  |-  ( Y  e.  (SubGrp `  G
)  ->  [  .0.  ]  .~  =  Y )

Proof of Theorem eqgid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqger.r . . . . 5  |-  .~  =  ( G ~QG  Y )
21releqg 14664 . . . 4  |-  Rel  .~
3 relelec 6700 . . . 4  |-  ( Rel 
.~  ->  ( x  e. 
[  .0.  ]  .~  <->  .0. 
.~  x ) )
42, 3ax-mp 8 . . 3  |-  ( x  e.  [  .0.  ]  .~ 
<->  .0.  .~  x )
5 subgrcl 14626 . . . . . . . . . 10  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
65adantr 451 . . . . . . . . 9  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  G  e.  Grp )
7 eqgid.3 . . . . . . . . . 10  |-  .0.  =  ( 0g `  G )
8 eqid 2283 . . . . . . . . . 10  |-  ( inv g `  G )  =  ( inv g `  G )
97, 8grpinvid 14533 . . . . . . . . 9  |-  ( G  e.  Grp  ->  (
( inv g `  G ) `  .0.  )  =  .0.  )
106, 9syl 15 . . . . . . . 8  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( inv g `  G ) `  .0.  )  =  .0.  )
1110oveq1d 5873 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( inv g `  G ) `  .0.  ) ( +g  `  G
) x )  =  (  .0.  ( +g  `  G ) x ) )
12 eqger.x . . . . . . . . 9  |-  X  =  ( Base `  G
)
13 eqid 2283 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
1412, 13, 7grplid 14512 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  (  .0.  ( +g  `  G ) x )  =  x )
155, 14sylan 457 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (  .0.  ( +g  `  G
) x )  =  x )
1611, 15eqtrd 2315 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( inv g `  G ) `  .0.  ) ( +g  `  G
) x )  =  x )
1716eleq1d 2349 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( ( inv g `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y  <->  x  e.  Y ) )
1817pm5.32da 622 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( (
x  e.  X  /\  ( ( ( inv g `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y
)  <->  ( x  e.  X  /\  x  e.  Y ) ) )
1912subgss 14622 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
2012, 7grpidcl 14510 . . . . . 6  |-  ( G  e.  Grp  ->  .0.  e.  X )
215, 20syl 15 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  .0.  e.  X )
2212, 8, 13, 1eqgval 14666 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
(  .0.  .~  x  <->  (  .0.  e.  X  /\  x  e.  X  /\  ( ( ( inv g `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y
) ) )
23 3anass 938 . . . . . . 7  |-  ( (  .0.  e.  X  /\  x  e.  X  /\  ( ( ( inv g `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y
)  <->  (  .0.  e.  X  /\  ( x  e.  X  /\  ( ( ( inv g `  G ) `  .0.  ) ( +g  `  G
) x )  e.  Y ) ) )
2422, 23syl6bb 252 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
(  .0.  .~  x  <->  (  .0.  e.  X  /\  ( x  e.  X  /\  ( ( ( inv g `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y
) ) ) )
2524baibd 875 . . . . 5  |-  ( ( ( G  e.  Grp  /\  Y  C_  X )  /\  .0.  e.  X )  ->  (  .0.  .~  x 
<->  ( x  e.  X  /\  ( ( ( inv g `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y
) ) )
265, 19, 21, 25syl21anc 1181 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  (  .0.  .~  x  <->  ( x  e.  X  /\  ( ( ( inv g `  G ) `  .0.  ) ( +g  `  G
) x )  e.  Y ) ) )
2719sseld 3179 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  Y  ->  x  e.  X ) )
2827pm4.71rd 616 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  Y  <->  ( x  e.  X  /\  x  e.  Y ) ) )
2918, 26, 283bitr4d 276 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  (  .0.  .~  x  <->  x  e.  Y
) )
304, 29syl5bb 248 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  [  .0.  ]  .~  <->  x  e.  Y ) )
3130eqrdv 2281 1  |-  ( Y  e.  (SubGrp `  G
)  ->  [  .0.  ]  .~  =  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    C_ wss 3152   class class class wbr 4023   Rel wrel 4694   ` cfv 5255  (class class class)co 5858   [cec 6658   Basecbs 13148   +g cplusg 13208   0gc0g 13400   Grpcgrp 14362   inv gcminusg 14363  SubGrpcsubg 14615   ~QG cqg 14617
This theorem is referenced by:  cldsubg  17793  divstgphaus  17805
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-ec 6662  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-subg 14618  df-eqg 14620
  Copyright terms: Public domain W3C validator