MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqglact Unicode version

Theorem eqglact 14668
Description: A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
eqglact.3  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
eqglact  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( x  e.  X  |->  ( A  .+  x ) ) " Y ) )
Distinct variable groups:    x,  .+    x, 
.~    x, G    x, X    x, A    x, Y

Proof of Theorem eqglact
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 eqger.x . . . . . . 7  |-  X  =  ( Base `  G
)
2 eqid 2283 . . . . . . 7  |-  ( inv g `  G )  =  ( inv g `  G )
3 eqglact.3 . . . . . . 7  |-  .+  =  ( +g  `  G )
4 eqger.r . . . . . . 7  |-  .~  =  ( G ~QG  Y )
51, 2, 3, 4eqgval 14666 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( A  .~  x  <->  ( A  e.  X  /\  x  e.  X  /\  ( ( ( inv g `  G ) `
 A )  .+  x )  e.  Y
) ) )
6 3anass 938 . . . . . 6  |-  ( ( A  e.  X  /\  x  e.  X  /\  ( ( ( inv g `  G ) `
 A )  .+  x )  e.  Y
)  <->  ( A  e.  X  /\  ( x  e.  X  /\  (
( ( inv g `  G ) `  A
)  .+  x )  e.  Y ) ) )
75, 6syl6bb 252 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( A  .~  x  <->  ( A  e.  X  /\  ( x  e.  X  /\  ( ( ( inv g `  G ) `
 A )  .+  x )  e.  Y
) ) ) )
87baibd 875 . . . 4  |-  ( ( ( G  e.  Grp  /\  Y  C_  X )  /\  A  e.  X
)  ->  ( A  .~  x  <->  ( x  e.  X  /\  ( ( ( inv g `  G ) `  A
)  .+  x )  e.  Y ) ) )
983impa 1146 . . 3  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  ( A  .~  x  <->  ( x  e.  X  /\  (
( ( inv g `  G ) `  A
)  .+  x )  e.  Y ) ) )
109abbidv 2397 . 2  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  { x  |  A  .~  x }  =  { x  |  ( x  e.  X  /\  ( ( ( inv g `  G ) `  A
)  .+  x )  e.  Y ) } )
11 dfec2 6663 . . 3  |-  ( A  e.  X  ->  [ A ]  .~  =  { x  |  A  .~  x } )
12113ad2ant3 978 . 2  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  [ A ]  .~  =  { x  |  A  .~  x } )
13 eqid 2283 . . . . . . . . 9  |-  ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) )  =  ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) )
1413, 1, 3, 2grplactcnv 14564 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) ) `  A ) : X -1-1-onto-> X  /\  `' ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  A )  =  ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  ( ( inv g `  G ) `  A
) ) ) )
1514simprd 449 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  `' ( ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) ) `  A )  =  ( ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) ) `  ( ( inv g `  G
) `  A )
) )
1613, 1grplactfval 14562 . . . . . . . . 9  |-  ( A  e.  X  ->  (
( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  A )  =  ( x  e.  X  |->  ( A  .+  x ) ) )
1716adantl 452 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x ) ) ) `
 A )  =  ( x  e.  X  |->  ( A  .+  x
) ) )
1817cnveqd 4857 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  `' ( ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) ) `  A )  =  `' ( x  e.  X  |->  ( A 
.+  x ) ) )
191, 2grpinvcl 14527 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( inv g `  G ) `  A
)  e.  X )
2013, 1grplactfval 14562 . . . . . . . 8  |-  ( ( ( inv g `  G ) `  A
)  e.  X  -> 
( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x ) ) ) `
 ( ( inv g `  G ) `
 A ) )  =  ( x  e.  X  |->  ( ( ( inv g `  G
) `  A )  .+  x ) ) )
2119, 20syl 15 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x ) ) ) `
 ( ( inv g `  G ) `
 A ) )  =  ( x  e.  X  |->  ( ( ( inv g `  G
) `  A )  .+  x ) ) )
2215, 18, 213eqtr3d 2323 . . . . . 6  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  `' ( x  e.  X  |->  ( A  .+  x ) )  =  ( x  e.  X  |->  ( ( ( inv g `  G ) `
 A )  .+  x ) ) )
2322cnveqd 4857 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  `' `' ( x  e.  X  |->  ( A  .+  x ) )  =  `' ( x  e.  X  |->  ( ( ( inv g `  G
) `  A )  .+  x ) ) )
24233adant2 974 . . . 4  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  `' `' ( x  e.  X  |->  ( A  .+  x ) )  =  `' ( x  e.  X  |->  ( ( ( inv g `  G
) `  A )  .+  x ) ) )
2524imaeq1d 5011 . . 3  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  ( `' `' ( x  e.  X  |->  ( A  .+  x ) ) " Y )  =  ( `' ( x  e.  X  |->  ( ( ( inv g `  G
) `  A )  .+  x ) ) " Y ) )
26 imacnvcnv 5137 . . 3  |-  ( `' `' ( x  e.  X  |->  ( A  .+  x ) ) " Y )  =  ( ( x  e.  X  |->  ( A  .+  x
) ) " Y
)
27 eqid 2283 . . . . 5  |-  ( x  e.  X  |->  ( ( ( inv g `  G ) `  A
)  .+  x )
)  =  ( x  e.  X  |->  ( ( ( inv g `  G ) `  A
)  .+  x )
)
2827mptpreima 5166 . . . 4  |-  ( `' ( x  e.  X  |->  ( ( ( inv g `  G ) `
 A )  .+  x ) ) " Y )  =  {
x  e.  X  | 
( ( ( inv g `  G ) `
 A )  .+  x )  e.  Y }
29 df-rab 2552 . . . 4  |-  { x  e.  X  |  (
( ( inv g `  G ) `  A
)  .+  x )  e.  Y }  =  {
x  |  ( x  e.  X  /\  (
( ( inv g `  G ) `  A
)  .+  x )  e.  Y ) }
3028, 29eqtri 2303 . . 3  |-  ( `' ( x  e.  X  |->  ( ( ( inv g `  G ) `
 A )  .+  x ) ) " Y )  =  {
x  |  ( x  e.  X  /\  (
( ( inv g `  G ) `  A
)  .+  x )  e.  Y ) }
3125, 26, 303eqtr3g 2338 . 2  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( A  .+  x
) ) " Y
)  =  { x  |  ( x  e.  X  /\  ( ( ( inv g `  G ) `  A
)  .+  x )  e.  Y ) } )
3210, 12, 313eqtr4d 2325 1  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( x  e.  X  |->  ( A  .+  x ) ) " Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   {cab 2269   {crab 2547    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   `'ccnv 4688   "cima 4692   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   [cec 6658   Basecbs 13148   +g cplusg 13208   Grpcgrp 14362   inv gcminusg 14363   ~QG cqg 14617
This theorem is referenced by:  eqgen  14670  cldsubg  17793  tgpconcompeqg  17794  snclseqg  17798
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-ec 6662  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-eqg 14620
  Copyright terms: Public domain W3C validator