MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqnetrri Unicode version

Theorem eqnetrri 2540
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrr.1  |-  A  =  B
eqnetrr.2  |-  A  =/= 
C
Assertion
Ref Expression
eqnetrri  |-  B  =/= 
C

Proof of Theorem eqnetrri
StepHypRef Expression
1 eqnetrr.1 . . 3  |-  A  =  B
21eqcomi 2362 . 2  |-  B  =  A
3 eqnetrr.2 . 2  |-  A  =/= 
C
42, 3eqnetri 2538 1  |-  B  =/= 
C
Colors of variables: wff set class
Syntax hints:    = wceq 1642    =/= wne 2521
This theorem is referenced by:  ballotlemii  24010  wallispilem4  27140
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2351  df-ne 2523
  Copyright terms: Public domain W3C validator