MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqnetrri Structured version   Unicode version

Theorem eqnetrri 2622
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrr.1  |-  A  =  B
eqnetrr.2  |-  A  =/= 
C
Assertion
Ref Expression
eqnetrri  |-  B  =/= 
C

Proof of Theorem eqnetrri
StepHypRef Expression
1 eqnetrr.1 . . 3  |-  A  =  B
21eqcomi 2442 . 2  |-  B  =  A
3 eqnetrr.2 . 2  |-  A  =/= 
C
42, 3eqnetri 2620 1  |-  B  =/= 
C
Colors of variables: wff set class
Syntax hints:    = wceq 1653    =/= wne 2601
This theorem is referenced by:  ballotlemii  24766  wallispilem4  27807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-ex 1552  df-cleq 2431  df-ne 2603
  Copyright terms: Public domain W3C validator