Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqrabdioph Structured version   Unicode version

Theorem eqrabdioph 26838
Description: Diophantine set builder for equality of polynomial expressions. Note that the two expressions need not be non-negative; only variables are so constrained. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eqrabdioph  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  B }  e.  (Dioph `  N ) )
Distinct variable group:    t, N
Allowed substitution hints:    A( t)    B( t)

Proof of Theorem eqrabdioph
StepHypRef Expression
1 nfmpt1 4300 . . . . . . 7  |-  F/_ t
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )
21nfel1 2584 . . . . . 6  |-  F/ t ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )
3 nfmpt1 4300 . . . . . . 7  |-  F/_ t
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  B )
43nfel1 2584 . . . . . 6  |-  F/ t ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  B )  e.  (mzPoly `  ( 1 ... N
) )
52, 4nfan 1847 . . . . 5  |-  F/ t ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )
6 mzpf 26795 . . . . . . . . . . 11  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) )  ->  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A ) : ( ZZ 
^m  ( 1 ... N ) ) --> ZZ )
76ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) : ( ZZ  ^m  ( 1 ... N ) ) --> ZZ )
8 zex 10293 . . . . . . . . . . . . 13  |-  ZZ  e.  _V
9 nn0ssz 10304 . . . . . . . . . . . . 13  |-  NN0  C_  ZZ
10 mapss 7058 . . . . . . . . . . . . 13  |-  ( ( ZZ  e.  _V  /\  NN0  C_  ZZ )  ->  ( NN0  ^m  ( 1 ... N ) )  C_  ( ZZ  ^m  (
1 ... N ) ) )
118, 9, 10mp2an 655 . . . . . . . . . . . 12  |-  ( NN0 
^m  ( 1 ... N ) )  C_  ( ZZ  ^m  (
1 ... N ) )
1211sseli 3346 . . . . . . . . . . 11  |-  ( t  e.  ( NN0  ^m  ( 1 ... N
) )  ->  t  e.  ( ZZ  ^m  (
1 ... N ) ) )
1312adantl 454 . . . . . . . . . 10  |-  ( ( ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
t  e.  ( ZZ 
^m  ( 1 ... N ) ) )
14 mptfcl 26779 . . . . . . . . . 10  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A ) : ( ZZ 
^m  ( 1 ... N ) ) --> ZZ 
->  ( t  e.  ( ZZ  ^m  ( 1 ... N ) )  ->  A  e.  ZZ ) )
157, 13, 14sylc 59 . . . . . . . . 9  |-  ( ( ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  ->  A  e.  ZZ )
1615zcnd 10378 . . . . . . . 8  |-  ( ( ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  ->  A  e.  CC )
17 mzpf 26795 . . . . . . . . . . 11  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) )  ->  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B ) : ( ZZ 
^m  ( 1 ... N ) ) --> ZZ )
1817ad2antlr 709 . . . . . . . . . 10  |-  ( ( ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  B ) : ( ZZ  ^m  ( 1 ... N ) ) --> ZZ )
19 mptfcl 26779 . . . . . . . . . 10  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B ) : ( ZZ 
^m  ( 1 ... N ) ) --> ZZ 
->  ( t  e.  ( ZZ  ^m  ( 1 ... N ) )  ->  B  e.  ZZ ) )
2018, 13, 19sylc 59 . . . . . . . . 9  |-  ( ( ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  ->  B  e.  ZZ )
2120zcnd 10378 . . . . . . . 8  |-  ( ( ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  ->  B  e.  CC )
2216, 21subeq0ad 9423 . . . . . . 7  |-  ( ( ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
( ( A  -  B )  =  0  <-> 
A  =  B ) )
2322bicomd 194 . . . . . 6  |-  ( ( ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
( A  =  B  <-> 
( A  -  B
)  =  0 ) )
2423ex 425 . . . . 5  |-  ( ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( t  e.  ( NN0  ^m  ( 1 ... N ) )  ->  ( A  =  B  <->  ( A  -  B )  =  0 ) ) )
255, 24ralrimi 2789 . . . 4  |-  ( ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  A. t  e.  ( NN0  ^m  ( 1 ... N ) ) ( A  =  B  <->  ( A  -  B )  =  0 ) )
26 rabbi 2888 . . . 4  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A  =  B  <->  ( A  -  B )  =  0 )  <->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  B }  =  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  ( A  -  B )  =  0 } )
2725, 26sylib 190 . . 3  |-  ( ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  B }  =  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  ( A  -  B )  =  0 } )
28273adant1 976 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  B }  =  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  ( A  -  B )  =  0 } )
29 simp1 958 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  N  e.  NN0 )
30 mzpsubmpt 26802 . . . 4  |-  ( ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  ( A  -  B
) )  e.  (mzPoly `  ( 1 ... N
) ) )
31303adant1 976 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  ( A  -  B
) )  e.  (mzPoly `  ( 1 ... N
) ) )
32 eq0rabdioph 26837 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  ( A  -  B
) )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  ( A  -  B )  =  0 }  e.  (Dioph `  N ) )
3329, 31, 32syl2anc 644 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  ( A  -  B )  =  0 }  e.  (Dioph `  N ) )
3428, 33eqeltrd 2512 1  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  B }  e.  (Dioph `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   {crab 2711   _Vcvv 2958    C_ wss 3322    e. cmpt 4268   -->wf 5452   ` cfv 5456  (class class class)co 6083    ^m cmap 7020   0cc0 8992   1c1 8993    - cmin 9293   NN0cn0 10223   ZZcz 10284   ...cfz 11045  mzPolycmzp 26781  Diophcdioph 26815
This theorem is referenced by:  elnn0rabdioph  26865  dvdsrabdioph  26872  rmydioph  27087  rmxdioph  27089  expdiophlem2  27095  expdioph  27096
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-er 6907  df-map 7022  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-n0 10224  df-z 10285  df-uz 10491  df-fz 11046  df-mzpcl 26782  df-mzp 26783  df-dioph 26816
  Copyright terms: Public domain W3C validator