MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrdav Unicode version

Theorem eqrdav 2295
Description: Deduce equality of classes from an equivalence of membership that depends on the membership variable. (Contributed by NM, 7-Nov-2008.)
Hypotheses
Ref Expression
eqrdav.1  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  C )
eqrdav.2  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  C )
eqrdav.3  |-  ( (
ph  /\  x  e.  C )  ->  (
x  e.  A  <->  x  e.  B ) )
Assertion
Ref Expression
eqrdav  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hint:    C( x)

Proof of Theorem eqrdav
StepHypRef Expression
1 eqrdav.1 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  C )
2 eqrdav.3 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  (
x  e.  A  <->  x  e.  B ) )
32biimpd 198 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  (
x  e.  A  ->  x  e.  B )
)
43impancom 427 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
x  e.  C  ->  x  e.  B )
)
51, 4mpd 14 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  B )
6 eqrdav.2 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  C )
72exbiri 605 . . . . . 6  |-  ( ph  ->  ( x  e.  C  ->  ( x  e.  B  ->  x  e.  A ) ) )
87com23 72 . . . . 5  |-  ( ph  ->  ( x  e.  B  ->  ( x  e.  C  ->  x  e.  A ) ) )
98imp 418 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
x  e.  C  ->  x  e.  A )
)
106, 9mpd 14 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  A )
115, 10impbida 805 . 2  |-  ( ph  ->  ( x  e.  A  <->  x  e.  B ) )
1211eqrdv 2294 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696
This theorem is referenced by:  boxcutc  6875  supminf  10321  ballotlemsima  23090  f1omvdconj  27492
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-cleq 2289
  Copyright terms: Public domain W3C validator