MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrelrdv2 Unicode version

Theorem eqrelrdv2 4915
Description: A version of eqrelrdv 4912. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Hypothesis
Ref Expression
eqrelrdv2.1  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) )
Assertion
Ref Expression
eqrelrdv2  |-  ( ( ( Rel  A  /\  Rel  B )  /\  ph )  ->  A  =  B )
Distinct variable groups:    x, y, A    x, B, y    ph, x, y

Proof of Theorem eqrelrdv2
StepHypRef Expression
1 eqrelrdv2.1 . . . 4  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) )
21alrimivv 1639 . . 3  |-  ( ph  ->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) )
32adantl 453 . 2  |-  ( ( ( Rel  A  /\  Rel  B )  /\  ph )  ->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) )
4 eqrel 4905 . . 3  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) ) )
54adantr 452 . 2  |-  ( ( ( Rel  A  /\  Rel  B )  /\  ph )  ->  ( A  =  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) ) )
63, 5mpbird 224 1  |-  ( ( ( Rel  A  /\  Rel  B )  /\  ph )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546    = wceq 1649    e. wcel 1717   <.cop 3760   Rel wrel 4823
This theorem is referenced by:  xpiindi  4950  fliftcnv  5972  dmtpos  6427  ercnv  6862  fpwwe2lem9  8446  invsym2  13915  eqbrrdv2  26403  dibglbN  31281  diclspsn  31309  dih1  31401  dihglbcpreN  31415  dihmeetlem4preN  31421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-opab 4208  df-xp 4824  df-rel 4825
  Copyright terms: Public domain W3C validator