MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrelrel Unicode version

Theorem eqrelrel 4825
Description: Extensionality principle for ordered triples (used by 2-place operations df-oprab 5904), analogous to eqrel 4814. Use relrelss 5233 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
eqrelrel  |-  ( ( A  u.  B ) 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  =  B  <->  A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  <->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z

Proof of Theorem eqrelrel
StepHypRef Expression
1 unss 3383 . 2  |-  ( ( A  C_  ( ( _V  X.  _V )  X. 
_V )  /\  B  C_  ( ( _V  X.  _V )  X.  _V )
)  <->  ( A  u.  B )  C_  (
( _V  X.  _V )  X.  _V ) )
2 ssrelrel 4824 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  C_  B 
<-> 
A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
3 ssrelrel 4824 . . . 4  |-  ( B 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( B  C_  A 
<-> 
A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) )
42, 3bi2anan9 843 . . 3  |-  ( ( A  C_  ( ( _V  X.  _V )  X. 
_V )  /\  B  C_  ( ( _V  X.  _V )  X.  _V )
)  ->  ( ( A  C_  B  /\  B  C_  A )  <->  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  /\  A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) ) )
5 eqss 3228 . . 3  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
6 2albiim 1603 . . . . 5  |-  ( A. y A. z ( <. <. x ,  y >. ,  z >.  e.  A  <->  <. <. x ,  y >. ,  z >.  e.  B
)  <->  ( A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  /\  A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) )
76albii 1557 . . . 4  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  <->  <. <. x ,  y
>. ,  z >.  e.  B )  <->  A. x
( A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  /\  A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) )
8 19.26 1584 . . . 4  |-  ( A. x ( A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  /\  A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) )  <-> 
( A. x A. y A. z ( <. <. x ,  y >. ,  z >.  e.  A  -> 
<. <. x ,  y
>. ,  z >.  e.  B )  /\  A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) )
97, 8bitri 240 . . 3  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  <->  <. <. x ,  y
>. ,  z >.  e.  B )  <->  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  /\  A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) )
104, 5, 93bitr4g 279 . 2  |-  ( ( A  C_  ( ( _V  X.  _V )  X. 
_V )  /\  B  C_  ( ( _V  X.  _V )  X.  _V )
)  ->  ( A  =  B  <->  A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  <->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
111, 10sylbir 204 1  |-  ( ( A  u.  B ) 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  =  B  <->  A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  <->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1531    = wceq 1633    e. wcel 1701   _Vcvv 2822    u. cun 3184    C_ wss 3186   <.cop 3677    X. cxp 4724
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pr 4251
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-rab 2586  df-v 2824  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-opab 4115  df-xp 4732
  Copyright terms: Public domain W3C validator