MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsbc3 Unicode version

Theorem eqsbc3 3030
Description: Substitution applied to an atomic wff. Set theory version of eqsb3 2384. (Contributed by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
eqsbc3  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  =  B  <->  A  =  B ) )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    V( x)

Proof of Theorem eqsbc3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 2993 . 2  |-  ( y  =  A  ->  ( [. y  /  x ]. x  =  B  <->  [. A  /  x ]. x  =  B )
)
2 eqeq1 2289 . 2  |-  ( y  =  A  ->  (
y  =  B  <->  A  =  B ) )
3 sbsbc 2995 . . 3  |-  ( [ y  /  x ]
x  =  B  <->  [. y  /  x ]. x  =  B )
4 eqsb3 2384 . . 3  |-  ( [ y  /  x ]
x  =  B  <->  y  =  B )
53, 4bitr3i 242 . 2  |-  ( [. y  /  x ]. x  =  B  <->  y  =  B )
61, 2, 5vtoclbg 2844 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  =  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623   [wsb 1629    e. wcel 1684   [.wsbc 2991
This theorem is referenced by:  sbceqal  3042  eqsbc3r  3048  snfil  17559  iotavalb  27630  onfrALTlem5  28307  eqsbc3rVD  28616  onfrALTlem5VD  28661
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992
  Copyright terms: Public domain W3C validator