MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsup Unicode version

Theorem eqsup 7207
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.)
Hypothesis
Ref Expression
supmo.1  |-  ( ph  ->  R  Or  A )
Assertion
Ref Expression
eqsup  |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) )  ->  sup ( B ,  A ,  R )  =  C ) )
Distinct variable groups:    y, z, A    y, R, z    y, B, z    y, C
Allowed substitution hints:    ph( y, z)    C( z)

Proof of Theorem eqsup
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 supmo.1 . . . . 5  |-  ( ph  ->  R  Or  A )
21adantr 451 . . . 4  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  R  Or  A )
3 simpr1 961 . . . . 5  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  C  e.  A )
4 3simpc 954 . . . . . 6  |-  ( ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) )  ->  ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )
54adantl 452 . . . . 5  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )
6 breq1 4026 . . . . . . . . 9  |-  ( x  =  C  ->  (
x R y  <->  C R
y ) )
76notbid 285 . . . . . . . 8  |-  ( x  =  C  ->  ( -.  x R y  <->  -.  C R y ) )
87ralbidv 2563 . . . . . . 7  |-  ( x  =  C  ->  ( A. y  e.  B  -.  x R y  <->  A. y  e.  B  -.  C R y ) )
9 breq2 4027 . . . . . . . . 9  |-  ( x  =  C  ->  (
y R x  <->  y R C ) )
109imbi1d 308 . . . . . . . 8  |-  ( x  =  C  ->  (
( y R x  ->  E. z  e.  B  y R z )  <->  ( y R C  ->  E. z  e.  B  y R
z ) ) )
1110ralbidv 2563 . . . . . . 7  |-  ( x  =  C  ->  ( A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z )  <->  A. y  e.  A  ( y R C  ->  E. z  e.  B  y R
z ) ) )
128, 11anbi12d 691 . . . . . 6  |-  ( x  =  C  ->  (
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) )  <->  ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) ) )
1312rspcev 2884 . . . . 5  |-  ( ( C  e.  A  /\  ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  ( y R C  ->  E. z  e.  B  y R z ) ) )  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )
143, 5, 13syl2anc 642 . . . 4  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )
152, 14supval2 7206 . . 3  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  sup ( B ,  A ,  R )  =  (
iota_ x  e.  A
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) ) )
162, 14supeu 7205 . . . . 5  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )
1712riota2 6327 . . . . 5  |-  ( ( C  e.  A  /\  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )  ->  ( ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  ( y R C  ->  E. z  e.  B  y R z ) )  <-> 
( iota_ x  e.  A
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) )  =  C ) )
183, 16, 17syl2anc 642 . . . 4  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  ( ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  ( y R C  ->  E. z  e.  B  y R z ) )  <-> 
( iota_ x  e.  A
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) )  =  C ) )
195, 18mpbid 201 . . 3  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  ( iota_ x  e.  A ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )  =  C )
2015, 19eqtrd 2315 . 2  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  sup ( B ,  A ,  R )  =  C )
2120ex 423 1  |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) )  ->  sup ( B ,  A ,  R )  =  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   E!wreu 2545   class class class wbr 4023    Or wor 4313   iota_crio 6297   supcsup 7193
This theorem is referenced by:  eqsupd  7208  suprzcl2  10308  supxr  10631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-po 4314  df-so 4315  df-iota 5219  df-riota 6304  df-sup 7194
  Copyright terms: Public domain W3C validator