MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equidqe Structured version   Unicode version

Theorem equidqe 2249
Description: equid 1688 with existential quantifier without using ax-4 2211 or ax-17 1626. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 27-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
equidqe  |-  -.  A. y  -.  x  =  x

Proof of Theorem equidqe
StepHypRef Expression
1 ax9from9o 2224 . 2  |-  -.  A. y  -.  y  =  x
2 ax-8 1687 . . . . 5  |-  ( y  =  x  ->  (
y  =  x  ->  x  =  x )
)
32pm2.43i 45 . . . 4  |-  ( y  =  x  ->  x  =  x )
43con3i 129 . . 3  |-  ( -.  x  =  x  ->  -.  y  =  x
)
54alimi 1568 . 2  |-  ( A. y  -.  x  =  x  ->  A. y  -.  y  =  x )
61, 5mto 169 1  |-  -.  A. y  -.  x  =  x
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wal 1549
This theorem is referenced by:  ax4sp1  2250  equidq  2251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-8 1687  ax-6o 2213  ax-9o 2214
  Copyright terms: Public domain W3C validator