Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equivbnd2 Structured version   Unicode version

Theorem equivbnd2 26501
Description: If balls are totally bounded in the metric  M, then balls are totally bounded in the equivalent metric  N. (Contributed by Mario Carneiro, 15-Sep-2015.)
Hypotheses
Ref Expression
equivbnd2.1  |-  ( ph  ->  M  e.  ( Met `  X ) )
equivbnd2.2  |-  ( ph  ->  N  e.  ( Met `  X ) )
equivbnd2.3  |-  ( ph  ->  R  e.  RR+ )
equivbnd2.4  |-  ( ph  ->  S  e.  RR+ )
equivbnd2.5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x N y )  <_  ( R  x.  ( x M y ) ) )
equivbnd2.6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x M y )  <_  ( S  x.  ( x N y ) ) )
equivbnd2.7  |-  C  =  ( M  |`  ( Y  X.  Y ) )
equivbnd2.8  |-  D  =  ( N  |`  ( Y  X.  Y ) )
equivbnd2.9  |-  ( ph  ->  ( C  e.  (
TotBnd `  Y )  <->  C  e.  ( Bnd `  Y ) ) )
Assertion
Ref Expression
equivbnd2  |-  ( ph  ->  ( D  e.  (
TotBnd `  Y )  <->  D  e.  ( Bnd `  Y ) ) )
Distinct variable groups:    x, y, C    x, D, y    ph, x, y    x, R, y    x, S, y    x, Y, y
Allowed substitution hints:    M( x, y)    N( x, y)    X( x, y)

Proof of Theorem equivbnd2
StepHypRef Expression
1 totbndbnd 26498 . 2  |-  ( D  e.  ( TotBnd `  Y
)  ->  D  e.  ( Bnd `  Y ) )
2 simpr 448 . . . . . 6  |-  ( (
ph  /\  D  e.  ( Bnd `  Y ) )  ->  D  e.  ( Bnd `  Y ) )
3 equivbnd2.7 . . . . . . 7  |-  C  =  ( M  |`  ( Y  X.  Y ) )
4 equivbnd2.1 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( Met `  X ) )
54adantr 452 . . . . . . . 8  |-  ( (
ph  /\  D  e.  ( Bnd `  Y ) )  ->  M  e.  ( Met `  X ) )
6 equivbnd2.2 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( Met `  X ) )
7 equivbnd2.8 . . . . . . . . . 10  |-  D  =  ( N  |`  ( Y  X.  Y ) )
87bnd2lem 26500 . . . . . . . . 9  |-  ( ( N  e.  ( Met `  X )  /\  D  e.  ( Bnd `  Y
) )  ->  Y  C_  X )
96, 8sylan 458 . . . . . . . 8  |-  ( (
ph  /\  D  e.  ( Bnd `  Y ) )  ->  Y  C_  X
)
10 metres2 18393 . . . . . . . 8  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( M  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
) )
115, 9, 10syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  D  e.  ( Bnd `  Y ) )  ->  ( M  |`  ( Y  X.  Y
) )  e.  ( Met `  Y ) )
123, 11syl5eqel 2520 . . . . . 6  |-  ( (
ph  /\  D  e.  ( Bnd `  Y ) )  ->  C  e.  ( Met `  Y ) )
13 equivbnd2.4 . . . . . . 7  |-  ( ph  ->  S  e.  RR+ )
1413adantr 452 . . . . . 6  |-  ( (
ph  /\  D  e.  ( Bnd `  Y ) )  ->  S  e.  RR+ )
159sselda 3348 . . . . . . . . 9  |-  ( ( ( ph  /\  D  e.  ( Bnd `  Y
) )  /\  x  e.  Y )  ->  x  e.  X )
169sselda 3348 . . . . . . . . 9  |-  ( ( ( ph  /\  D  e.  ( Bnd `  Y
) )  /\  y  e.  Y )  ->  y  e.  X )
1715, 16anim12dan 811 . . . . . . . 8  |-  ( ( ( ph  /\  D  e.  ( Bnd `  Y
) )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( x  e.  X  /\  y  e.  X ) )
18 equivbnd2.6 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x M y )  <_  ( S  x.  ( x N y ) ) )
1918adantlr 696 . . . . . . . 8  |-  ( ( ( ph  /\  D  e.  ( Bnd `  Y
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x M y )  <_ 
( S  x.  (
x N y ) ) )
2017, 19syldan 457 . . . . . . 7  |-  ( ( ( ph  /\  D  e.  ( Bnd `  Y
) )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( x M y )  <_ 
( S  x.  (
x N y ) ) )
213oveqi 6094 . . . . . . . . 9  |-  ( x C y )  =  ( x ( M  |`  ( Y  X.  Y
) ) y )
22 ovres 6213 . . . . . . . . 9  |-  ( ( x  e.  Y  /\  y  e.  Y )  ->  ( x ( M  |`  ( Y  X.  Y
) ) y )  =  ( x M y ) )
2321, 22syl5eq 2480 . . . . . . . 8  |-  ( ( x  e.  Y  /\  y  e.  Y )  ->  ( x C y )  =  ( x M y ) )
2423adantl 453 . . . . . . 7  |-  ( ( ( ph  /\  D  e.  ( Bnd `  Y
) )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( x C y )  =  ( x M y ) )
257oveqi 6094 . . . . . . . . . 10  |-  ( x D y )  =  ( x ( N  |`  ( Y  X.  Y
) ) y )
26 ovres 6213 . . . . . . . . . 10  |-  ( ( x  e.  Y  /\  y  e.  Y )  ->  ( x ( N  |`  ( Y  X.  Y
) ) y )  =  ( x N y ) )
2725, 26syl5eq 2480 . . . . . . . . 9  |-  ( ( x  e.  Y  /\  y  e.  Y )  ->  ( x D y )  =  ( x N y ) )
2827adantl 453 . . . . . . . 8  |-  ( ( ( ph  /\  D  e.  ( Bnd `  Y
) )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( x D y )  =  ( x N y ) )
2928oveq2d 6097 . . . . . . 7  |-  ( ( ( ph  /\  D  e.  ( Bnd `  Y
) )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( S  x.  ( x D y ) )  =  ( S  x.  ( x N y ) ) )
3020, 24, 293brtr4d 4242 . . . . . 6  |-  ( ( ( ph  /\  D  e.  ( Bnd `  Y
) )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( x C y )  <_ 
( S  x.  (
x D y ) ) )
312, 12, 14, 30equivbnd 26499 . . . . 5  |-  ( (
ph  /\  D  e.  ( Bnd `  Y ) )  ->  C  e.  ( Bnd `  Y ) )
32 equivbnd2.9 . . . . . 6  |-  ( ph  ->  ( C  e.  (
TotBnd `  Y )  <->  C  e.  ( Bnd `  Y ) ) )
3332biimpar 472 . . . . 5  |-  ( (
ph  /\  C  e.  ( Bnd `  Y ) )  ->  C  e.  ( TotBnd `  Y )
)
3431, 33syldan 457 . . . 4  |-  ( (
ph  /\  D  e.  ( Bnd `  Y ) )  ->  C  e.  ( TotBnd `  Y )
)
35 bndmet 26490 . . . . 5  |-  ( D  e.  ( Bnd `  Y
)  ->  D  e.  ( Met `  Y ) )
3635adantl 453 . . . 4  |-  ( (
ph  /\  D  e.  ( Bnd `  Y ) )  ->  D  e.  ( Met `  Y ) )
37 equivbnd2.3 . . . . 5  |-  ( ph  ->  R  e.  RR+ )
3837adantr 452 . . . 4  |-  ( (
ph  /\  D  e.  ( Bnd `  Y ) )  ->  R  e.  RR+ )
39 equivbnd2.5 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x N y )  <_  ( R  x.  ( x M y ) ) )
4039adantlr 696 . . . . . 6  |-  ( ( ( ph  /\  D  e.  ( Bnd `  Y
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x N y )  <_ 
( R  x.  (
x M y ) ) )
4117, 40syldan 457 . . . . 5  |-  ( ( ( ph  /\  D  e.  ( Bnd `  Y
) )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( x N y )  <_ 
( R  x.  (
x M y ) ) )
4224oveq2d 6097 . . . . 5  |-  ( ( ( ph  /\  D  e.  ( Bnd `  Y
) )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( R  x.  ( x C y ) )  =  ( R  x.  ( x M y ) ) )
4341, 28, 423brtr4d 4242 . . . 4  |-  ( ( ( ph  /\  D  e.  ( Bnd `  Y
) )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( x D y )  <_ 
( R  x.  (
x C y ) ) )
4434, 36, 38, 43equivtotbnd 26487 . . 3  |-  ( (
ph  /\  D  e.  ( Bnd `  Y ) )  ->  D  e.  ( TotBnd `  Y )
)
4544ex 424 . 2  |-  ( ph  ->  ( D  e.  ( Bnd `  Y )  ->  D  e.  (
TotBnd `  Y ) ) )
461, 45impbid2 196 1  |-  ( ph  ->  ( D  e.  (
TotBnd `  Y )  <->  D  e.  ( Bnd `  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    C_ wss 3320   class class class wbr 4212    X. cxp 4876    |` cres 4880   ` cfv 5454  (class class class)co 6081    x. cmul 8995    <_ cle 9121   RR+crp 10612   Metcme 16687   TotBndctotbnd 26475   Bndcbnd 26476
This theorem is referenced by:  rrntotbnd  26545
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-ec 6907  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-2 10058  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-icc 10923  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-totbnd 26477  df-bnd 26488
  Copyright terms: Public domain W3C validator