MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivcmet Unicode version

Theorem equivcmet 18757
Description: If two metrics are strongly equivalent, one is complete iff the other is. Unlike equivcau 18742, metss2 18074, this theorem does not have a one-directional form - it is possible for a metric  C that is strongly finer than the complete metric  D to be incomplete and vice versa. Consider  D  = the metric on  RR induced by the usual homeomorphism from  ( 0 ,  1 ) against the usual metric 
C on  RR and against the discrete metric  E on  RR. Then both  C and  E are complete but  D is not, and  C is strongly finer than  D, which is strongly finer than  E. (Contributed by Mario Carneiro, 15-Sep-2015.)
Hypotheses
Ref Expression
equivcmet.1  |-  ( ph  ->  C  e.  ( Met `  X ) )
equivcmet.2  |-  ( ph  ->  D  e.  ( Met `  X ) )
equivcmet.3  |-  ( ph  ->  R  e.  RR+ )
equivcmet.4  |-  ( ph  ->  S  e.  RR+ )
equivcmet.5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
equivcmet.6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x D y )  <_  ( S  x.  ( x C y ) ) )
Assertion
Ref Expression
equivcmet  |-  ( ph  ->  ( C  e.  (
CMet `  X )  <->  D  e.  ( CMet `  X
) ) )
Distinct variable groups:    x, y, C    x, D, y    ph, x, y    x, R, y    x, X, y    x, S, y

Proof of Theorem equivcmet
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 equivcmet.1 . . . 4  |-  ( ph  ->  C  e.  ( Met `  X ) )
2 equivcmet.2 . . . 4  |-  ( ph  ->  D  e.  ( Met `  X ) )
31, 22thd 231 . . 3  |-  ( ph  ->  ( C  e.  ( Met `  X )  <-> 
D  e.  ( Met `  X ) ) )
4 equivcmet.4 . . . . . 6  |-  ( ph  ->  S  e.  RR+ )
5 equivcmet.6 . . . . . 6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x D y )  <_  ( S  x.  ( x C y ) ) )
62, 1, 4, 5equivcfil 18741 . . . . 5  |-  ( ph  ->  (CauFil `  C )  C_  (CauFil `  D )
)
7 equivcmet.3 . . . . . 6  |-  ( ph  ->  R  e.  RR+ )
8 equivcmet.5 . . . . . 6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
91, 2, 7, 8equivcfil 18741 . . . . 5  |-  ( ph  ->  (CauFil `  D )  C_  (CauFil `  C )
)
106, 9eqssd 3209 . . . 4  |-  ( ph  ->  (CauFil `  C )  =  (CauFil `  D )
)
11 eqid 2296 . . . . . . . 8  |-  ( MetOpen `  C )  =  (
MetOpen `  C )
12 eqid 2296 . . . . . . . 8  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
1311, 12, 1, 2, 7, 8metss2 18074 . . . . . . 7  |-  ( ph  ->  ( MetOpen `  C )  C_  ( MetOpen `  D )
)
1412, 11, 2, 1, 4, 5metss2 18074 . . . . . . 7  |-  ( ph  ->  ( MetOpen `  D )  C_  ( MetOpen `  C )
)
1513, 14eqssd 3209 . . . . . 6  |-  ( ph  ->  ( MetOpen `  C )  =  ( MetOpen `  D
) )
1615oveq1d 5889 . . . . 5  |-  ( ph  ->  ( ( MetOpen `  C
)  fLim  f )  =  ( ( MetOpen `  D )  fLim  f
) )
1716neeq1d 2472 . . . 4  |-  ( ph  ->  ( ( ( MetOpen `  C )  fLim  f
)  =/=  (/)  <->  ( ( MetOpen
`  D )  fLim  f )  =/=  (/) ) )
1810, 17raleqbidv 2761 . . 3  |-  ( ph  ->  ( A. f  e.  (CauFil `  C )
( ( MetOpen `  C
)  fLim  f )  =/=  (/)  <->  A. f  e.  (CauFil `  D ) ( (
MetOpen `  D )  fLim  f )  =/=  (/) ) )
193, 18anbi12d 691 . 2  |-  ( ph  ->  ( ( C  e.  ( Met `  X
)  /\  A. f  e.  (CauFil `  C )
( ( MetOpen `  C
)  fLim  f )  =/=  (/) )  <->  ( D  e.  ( Met `  X
)  /\  A. f  e.  (CauFil `  D )
( ( MetOpen `  D
)  fLim  f )  =/=  (/) ) ) )
2011iscmet 18726 . 2  |-  ( C  e.  ( CMet `  X
)  <->  ( C  e.  ( Met `  X
)  /\  A. f  e.  (CauFil `  C )
( ( MetOpen `  C
)  fLim  f )  =/=  (/) ) )
2112iscmet 18726 . 2  |-  ( D  e.  ( CMet `  X
)  <->  ( D  e.  ( Met `  X
)  /\  A. f  e.  (CauFil `  D )
( ( MetOpen `  D
)  fLim  f )  =/=  (/) ) )
2219, 20, 213bitr4g 279 1  |-  ( ph  ->  ( C  e.  (
CMet `  X )  <->  D  e.  ( CMet `  X
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1696    =/= wne 2459   A.wral 2556   (/)c0 3468   class class class wbr 4039   ` cfv 5271  (class class class)co 5874    x. cmul 8758    <_ cle 8884   RR+crp 10370   Metcme 16386   MetOpencmopn 16388    fLim cflim 17645  CauFilccfil 18694   CMetcms 18696
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ico 10678  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-bases 16654  df-fbas 17536  df-fil 17557  df-cfil 18697  df-cmet 18699
  Copyright terms: Public domain W3C validator