MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equs3 Structured version   Unicode version

Theorem equs3 1655
Description: Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equs3  |-  ( E. x ( x  =  y  /\  ph )  <->  -. 
A. x ( x  =  y  ->  -.  ph ) )

Proof of Theorem equs3
StepHypRef Expression
1 alinexa 1589 . 2  |-  ( A. x ( x  =  y  ->  -.  ph )  <->  -. 
E. x ( x  =  y  /\  ph ) )
21con2bii 324 1  |-  ( E. x ( x  =  y  /\  ph )  <->  -. 
A. x ( x  =  y  ->  -.  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360   A.wal 1550   E.wex 1551
This theorem is referenced by:  equs5eOLD  1912  sbnOLD  2133  sbnNEW7  29624
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552
  Copyright terms: Public domain W3C validator