Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsal Unicode version

Theorem equsal 1913
 Description: A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.)
Hypotheses
Ref Expression
equsal.1
equsal.2
Assertion
Ref Expression
equsal

Proof of Theorem equsal
StepHypRef Expression
1 equsal.2 . . . . 5
2 equsal.1 . . . . . 6
3219.3 1793 . . . . 5
41, 3syl6bbr 254 . . . 4
54pm5.74i 236 . . 3
65albii 1556 . 2
72nfri 1754 . . . . 5
87a1d 22 . . . 4
92, 8alrimi 1757 . . 3
10 ax9o 1903 . . 3
119, 10impbii 180 . 2
126, 11bitr4i 243 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176  wal 1530  wnf 1534 This theorem is referenced by:  equsalh  1914  equsex  1915  dvelimf  1950  sb6x  1982  asymref2  5076  intirr  5077  fun11  5331  pm13.192  27713 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1532  df-nf 1535
 Copyright terms: Public domain W3C validator