Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsalhw Structured version   Unicode version

Theorem equsalhw 1860
 Description: Weaker version of equsalh 2001 (requiring distinct variables) without using ax-12 1950. (Contributed by NM, 29-Nov-2015.) (Proof shortened by Wolf Lammen, 28-Dec-2017.)
Hypotheses
Ref Expression
equsalhw.1
equsalhw.2
Assertion
Ref Expression
equsalhw
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem equsalhw
StepHypRef Expression
1 equsalhw.1 . . 3
2119.23h 1820 . 2
3 equsalhw.2 . . . 4
43pm5.74i 237 . . 3
54albii 1575 . 2
6 a9ev 1668 . . 3
76a1bi 328 . 2
82, 5, 73bitr4i 269 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549  wex 1550 This theorem is referenced by:  dvelimhw  1876  dvelimhwOLD  1877  dvelimhwNEW7  29455 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-11 1761 This theorem depends on definitions:  df-bi 178  df-ex 1551  df-nf 1554
 Copyright terms: Public domain W3C validator