Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsalhwOLD Structured version   Unicode version

Theorem equsalhwOLD 1861
 Description: Obsolete proof of equsalhw 1860 as of 28-Dec-2017. (Contributed by NM, 29-Nov-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
equsalhwOLD.1
equsalhwOLD.2
Assertion
Ref Expression
equsalhwOLD
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem equsalhwOLD
StepHypRef Expression
1 equsalhwOLD.2 . . . . 5
2 sp 1763 . . . . . 6
3 equsalhwOLD.1 . . . . . 6
42, 3impbii 181 . . . . 5
51, 4syl6bbr 255 . . . 4
65pm5.74i 237 . . 3
76albii 1575 . 2
83a1d 23 . . . 4
93, 8alrimih 1574 . . 3
10 ax9v 1667 . . . . 5
11 con3 128 . . . . . 6
1211al2imi 1570 . . . . 5
1310, 12mtoi 171 . . . 4
14 ax6o 1766 . . . 4
1513, 14syl 16 . . 3
169, 15impbii 181 . 2
177, 16bitr4i 244 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 177  wal 1549 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-11 1761 This theorem depends on definitions:  df-bi 178  df-ex 1551
 Copyright terms: Public domain W3C validator