Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equsb1NEW7 Structured version   Unicode version

Theorem equsb1NEW7 29600
Description: Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equsb1NEW7  |-  [ y  /  x ] x  =  y

Proof of Theorem equsb1NEW7
StepHypRef Expression
1 sb2NEW7 29599 . 2  |-  ( A. x ( x  =  y  ->  x  =  y )  ->  [ y  /  x ] x  =  y )
2 id 21 . 2  |-  ( x  =  y  ->  x  =  y )
31, 2mpg 1558 1  |-  [ y  /  x ] x  =  y
Colors of variables: wff set class
Syntax hints:    -> wi 4   [wsb 1659
This theorem is referenced by:  sbequ8NEW7  29637
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-11 1762  ax-12 1951  ax-7v 29504
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555  df-sb 1660
  Copyright terms: Public domain W3C validator