MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsb2 Unicode version

Theorem equsb2 2092
Description: Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equsb2  |-  [ y  /  x ] y  =  x

Proof of Theorem equsb2
StepHypRef Expression
1 sb2 2079 . 2  |-  ( A. x ( x  =  y  ->  y  =  x )  ->  [ y  /  x ] y  =  x )
2 equcomi 1687 . 2  |-  ( x  =  y  ->  y  =  x )
31, 2mpg 1554 1  |-  [ y  /  x ] y  =  x
Colors of variables: wff set class
Syntax hints:    -> wi 4   [wsb 1655
This theorem is referenced by:  sbco  2140  sbidm  2142
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-11 1757  ax-12 1946
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1548  df-sb 1656
  Copyright terms: Public domain W3C validator