MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsb2 Unicode version

Theorem equsb2 1975
Description: Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equsb2  |-  [ y  /  x ] y  =  x

Proof of Theorem equsb2
StepHypRef Expression
1 sb2 1963 . 2  |-  ( A. x ( x  =  y  ->  y  =  x )  ->  [ y  /  x ] y  =  x )
2 equcomi 1646 . 2  |-  ( x  =  y  ->  y  =  x )
31, 2mpg 1535 1  |-  [ y  /  x ] y  =  x
Colors of variables: wff set class
Syntax hints:    -> wi 4   [wsb 1629
This theorem is referenced by:  sbco  2023  sbidm  2025
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-sb 1630
  Copyright terms: Public domain W3C validator