MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsb2 Unicode version

Theorem equsb2 2040
Description: Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equsb2  |-  [ y  /  x ] y  =  x

Proof of Theorem equsb2
StepHypRef Expression
1 sb2 2028 . 2  |-  ( A. x ( x  =  y  ->  y  =  x )  ->  [ y  /  x ] y  =  x )
2 equcomi 1679 . 2  |-  ( x  =  y  ->  y  =  x )
31, 2mpg 1548 1  |-  [ y  /  x ] y  =  x
Colors of variables: wff set class
Syntax hints:    -> wi 4   [wsb 1648
This theorem is referenced by:  sbco  2088  sbidm  2090
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-sb 1649
  Copyright terms: Public domain W3C validator