MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsb2 Structured version   Unicode version

Theorem equsb2 2106
Description: Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equsb2  |-  [ y  /  x ] y  =  x

Proof of Theorem equsb2
StepHypRef Expression
1 sb2 2093 . 2  |-  ( A. x ( x  =  y  ->  y  =  x )  ->  [ y  /  x ] y  =  x )
2 equcomi 1693 . 2  |-  ( x  =  y  ->  y  =  x )
31, 2mpg 1558 1  |-  [ y  /  x ] y  =  x
Colors of variables: wff set class
Syntax hints:    -> wi 4   [wsb 1659
This theorem is referenced by:  sbco  2164  sbidm  2166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-11 1763  ax-12 1953
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-sb 1660
  Copyright terms: Public domain W3C validator