MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsb3lem Unicode version

Theorem equsb3lem 2106
Description: Lemma for equsb3 2107. (Contributed by Raph Levien and FL, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
equsb3lem  |-  ( [ x  /  y ] y  =  z  <->  x  =  z )
Distinct variable groups:    y, z    x, y

Proof of Theorem equsb3lem
StepHypRef Expression
1 nfv 1619 . 2  |-  F/ y  x  =  z
2 equequ1 1684 . 2  |-  ( y  =  x  ->  (
y  =  z  <->  x  =  z ) )
31, 2sbie 2043 1  |-  ( [ x  /  y ] y  =  z  <->  x  =  z )
Colors of variables: wff set class
Syntax hints:    <-> wb 176   [wsb 1648
This theorem is referenced by:  equsb3  2107
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649
  Copyright terms: Public domain W3C validator