MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsb3lem Unicode version

Theorem equsb3lem 2154
Description: Lemma for equsb3 2155. (Contributed by Raph Levien and FL, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
equsb3lem  |-  ( [ x  /  y ] y  =  z  <->  x  =  z )
Distinct variable groups:    y, z    x, y

Proof of Theorem equsb3lem
StepHypRef Expression
1 nfv 1626 . 2  |-  F/ y  x  =  z
2 equequ1 1692 . 2  |-  ( y  =  x  ->  (
y  =  z  <->  x  =  z ) )
31, 2sbie 2091 1  |-  ( [ x  /  y ] y  =  z  <->  x  =  z )
Colors of variables: wff set class
Syntax hints:    <-> wb 177   [wsb 1655
This theorem is referenced by:  equsb3  2155
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-11 1757  ax-12 1946
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656
  Copyright terms: Public domain W3C validator