MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equtr2 Unicode version

Theorem equtr2 1654
Description: A transitive law for equality. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
equtr2  |-  ( ( x  =  z  /\  y  =  z )  ->  x  =  y )

Proof of Theorem equtr2
StepHypRef Expression
1 equtrr 1653 . . 3  |-  ( z  =  y  ->  (
x  =  z  ->  x  =  y )
)
21equcoms 1651 . 2  |-  ( y  =  z  ->  (
x  =  z  ->  x  =  y )
)
32impcom 419 1  |-  ( ( x  =  z  /\  y  =  z )  ->  x  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem is referenced by:  mo  2165  2mo  2221  euequ1  2231  funpartfun  24481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator